
Orbital Viewer
by David Manthey

February 1998
Updated September 2004

Orbital Viewer Manual copyright 1998-2004 by David Manthey

Orbital Viewer Program copyright 1986-2004 by David Manthey

2

3

TABLE OF CONTENTS

Table of Contents... 3
Introduction..5
Orbitals...7
Lighting..10
Stereo Display..12

Monoscopic ... 13
Stereoscope... 13

Building a Stereoscope .. 13
Interlaced...14
Red-Blue .. 15
Stereogram.. 15
Overlay.. 15
Chromadepth ..16

Camera .. 17
Cutaway...18
Rendering Method..19
Point Drawing Mode..20
Polygon Drawing Mode..21
Raytracing Drawing Mode.. 24
Asymptote Drawing Mode.. 29
Sequences... 30

Interpolation ... 30
Incremental Position...33
Interpolated Values...33
Sequence Output.. 34

File Formats – Input..35

Orbital Specification Files (.ORB)....................... 35
Example File ... 41

File Formats - Output..42
Orbital Specification Files (.ORB).......................42
Orbital Viewer Files (.OV) ..42
Portable Pixel Map Files (.PPM)...........................42
TIFF Files (.TIF)...42
Bitmap Files (.BMP)..43
VRML Files (.WRL) ...43
AVI Files (.AVI) ..43
Digistar II Files (.TXT) ..44

Orbital Mathematics...45
Introduction...45
List of Symbols ...45
Electron Orbital Wave Function46
Orbital Function Gradient49

Imaging Mathematics..52
Camera Equations..52
Raytracing .. 53

Grand Table.. 55
Program History ...56
Author’s Note.. 57

Contact Information... 57
Acknowledgements ... 57

References ..58

4

5

INTRODUCTION

Orbital Viewer is a program for visualizing atomic
and molecular orbitals. Orbitals are the electron
probability functions which are computed from
Schrödinger’s Equation. The example shown in
Figure 1 is a 4f0 orbital (n = 4, l = 3 (f), ml = 0), plotted
with a surface of probability where Ψ2 = 10-4. It is
illuminated with two light sources to better show
its shape.

There are two different versions of Orbital Viewer.
The first is a graphics program, compatible with
Windows 95, Windows NT, and Windows 3.x (with
WIN32s installed). This program requires an 80386
processor or better, and is called OV.EXE. The
second version is a command line program which
can theoretically be run on any machine which
has an ANSI C compatible compiler. This program
is called ANSIORB.EXE (or something similar, as
some computers do not require the .EXE extension
to determine file type).

Although this manual is focused on OV.EXE (the graphics version), almost all of the options
available through the graphics interface are available to the command line version. The principal
difference between them is that the graphics version provides an easier way to manipulate and
modify an orbital, while the command line version is typically faster and runs on more machines.
Both versions can read the same orbital specification file format.

This program can display orbitals in three general ways:

(1) Probability density: This shows the probability at each point in the orbital based on how
intense the colors are, or how many points are present. See Figure 2a.

(2) Surface of probability: This is a surface of constant probability. Like an line on a contour map,
this displays the location where the probability has a constant value. See Figure 2b.

(3) Asymptotes: These are the conic sections, spheres, and other shapes where the probability is zero.
See Figure 2c. The phase of the orbital changes at the asymptote.

Figure 1: 4f0, Ψ2=10-4

6

Throughout this manual, orbitals have different colors for the positive and negative phases. Phases
are taken as defined in Condon and Shortley (see References). In all figures the blue or darker color
is the positive phase while the orange color or lighter color is the negative phase.

There are also three general types of display:

(1) Point density plot: This is a probability density representation of the orbital. Points are
randomly selected based on the probability of the orbital. See Figure 3a. This can be combined
with a polygon asymptote plot. None of the lighting options apply to this style.

(2) Polygon surface plot: This is an approximation of a surface of constant probability, with the
vertices of the polygons at the surface. See Figure 3b. This can be combined with a polygon
asymptote plot. Opacity is approximated, and shadows and indices of refraction can not be applied
to this style.

(3) Raytracing: This style supports the most features, including surface, probability, and interior
opacity, precise asymptotes, point light sources with shadows, and indices of refraction. See Figure
3c. This is also the most computationally intensive style.

There are many options within each display type. Additionally, lighting can be adjusted, a cutaway
can be added (to show the interior of the orbital), and six different forms of stereo displays are
supported (to show the orbital in 3D). This manual includes brief examples of the different
functions, plus a guide to the input file format, and a section on the equations used to calculate the
orbitals.

Figure 2a: 4f0, probability density
plot

Figure 2b: 4f0, surface of
probability, Ψ2=10-4

Figure 2c: 4f0, asymptotes

Figure 3a: 4f0, point density plot Figure 3b: 4f0, polygon surface
plot

Figure 3c: 4f0, raytraced surface
plot

7

ORBITALS

The most important item that can be specified
in Orbital Viewer is the atom or molecule
which will be drawn. This is specified in the
Display / Orbitals menu option. Selecting this
displays the dialog shown in Figure 4. Any
positive number of atoms can be specified.

Each atom is specified by three quantum
numbers: n, l, and m. n is the principal
quantum number, l is the orbital quantum
number, and m is the angular momentum
quantum number (sometimes referred to as
the magnetic quantum number). m is often
written as ml, with the spin quantum number
written as ms. The spin quantum number does
not effect the shape of the orbital, and,
therefore, is not an adjustable parameter. n
can be any positive integer. However, due to
the limits of computer precision, n is restricted
to the range of 1 to 30. l can be any value between 0 and n-1, inclusive. m can be any value between
–l and +l, inclusive. The actual shape of the orbital is dependant on n-l, l-|m|, and m.

The orbital quantum number, l, is often designated as a letter. Letter designations are given to l
values from 0 to 20 as follows: {s, p, d, f, g, h, i, k, l, m, n, o, q, r, t, u, v, w, x, y, z}, where s corresponds to
l=0, p to l=1, d to l=2, and so forth. The first four of these are due to spectroscopy historical reasons,
with s being short for sharp, p for principal, d for diffuse, and f for fine. The remaining letters were
assigned in order, skipping those which where thought to cause confusion.

All orbitals are computed using the hydrogenic equations, but any atom can be specified by giving
the number of protons (sometimes referred to as Z), and the atomic weight. A reasonable
approximation of atomic weight is (Z+N) amu, where N is the number of neutrons, and an amu
(atomic mass unit) is 1.6605402x10-27 kg. Increasing the mass or the number of protons has the
effect of shrinking the radius of the orbital.

The factor is a multiplication factor for the atom’s probability. Typically, it is either 1 or –1. –1 will
reverse the phases of the orbital, which is useful in molecule construction. See the example on H2O,
below.

The orientation of the atom is specified by three angles, where alpha is the rotation about the z-
axis, beta is the rotation about the transformed x-axis (transformed by alpha), and gamma is the
rotation about the transformed z-axis (transformed by both alpha and beta).

The position of the atom is generally only relevant for molecules. However, when rotating the
atom using the graphical interface, it is always rotated about the origin. Distances can be specified

Figure 4: Orbital Dialog

8

in Bohr atomic radii, a0, where a0 = 5.29177249x10-11 m. See the section on Orbital Mathematics, page
45, for more details.

Molecules are calculated using the Linear Combination of Atomic Orbitals (LCAO) method. This
computes the values Ψ for each atom at a point in space, sums them, and then squares the sum to
produce Ψ2. This has the nature that positive phases will reinforce each other, as will negative
phases, and that positive phases will cancel out negative phases. The positive phase is where Ψ is
positive.

Some examples of different atoms are given in Figure 5. Figure 5a shows a 3s0 that has been
cutaway to show the interior structure of the orbital. Figure 5b shows an 11m7 (very energetic), and
Figure 5c shows H2O, which is defined using three atoms. The first is an oxygen atom located at the
origin, with n=2, l=1, m=1, 8 protons, mass=16 amu, and a factor of +1. The second is a hydrogen
atom located at x=0, y=0.7589 Å, z=0.5877 Å, with n=1, l=0, s=0, 1 proton, mass=1 amu, and a factor of
–1. The third is a hydrogen atom located at x=0, y=-0.7589 Å, z=0.5877 Å, with n=1, l=0, s=0, 1 proton,
mass=1 amu, and a factor of +1. These individual atoms are shown in Figures 6a, 6b, and 6c.

Although the three quantum numbers, n, l, and m, define the shape of the orbital, the actual shape
is more dependant on the value n-l, l-|m|, and m. These quantities determine how many and what
kind of asymptotes (where the phase changes) the orbital will have. An atomic orbital always has
n-l-1 spherical asymptotes, (l-|m|)/2 conical asymptotes (where a 1/2 conical asymptotes is a plane,
which can be thought of as a degenerate cone), and |m| planar asymptotes. See Figure 7. A more
complete example of this is given in the Grand Table (page 55), where all orbitals with 10≤n are
arranged in different manners to illustrate their structure.

Figure 5a: 3s0, Ψ2=10-3.7 Figure 5b: 11m7, Ψ2=10-6 Figure 5c: H2O, Ψ2=10-1

Figure 6a: 2p1, Ψ2=10-1, 8 protons,
mass=16 amu

Figure 6b: 1s0, Ψ2=10-1, factor=-1 Figure 6c: 1s0, Ψ2=10-1, factor=+1

9

Figure 7a: Cutaway of orbitals
showing the spherical asymptotes

dependant on n-l-1. The four
orbitals clockwise from the upper

left are 1s0, 2s0, 4s0, and 3s0.

Figure 7b: Orbitals showing the
conical asymptotes dependant on
l-|m|. The four orbitals clockwise
from the upper left are 2p0, 3d0,

5g0, and 4f0.

Figure 7c: Orbitals showing the
planar asymptotes dependant on

m. The four orbitals clockwise
from the upper left are 2p1, 3d2, 4f3,

and 5g4.

10

LIGHTING

By “illuminating” an orbital, its three-
dimensional structure becomes more
apparent. This is specified in the Display /

Lighting menu option. Selecting this displays
the dialog shown in Figure 7. Any non-
negative number of light sources can be
specified.

The location of each light source is specified
with respect to the origin of the orbital. This
light source can appear to be fixed (always in
the same orientation as the camera), or can
rotate along with the orbital. The second
option is called “rotate with viewpoint”.

Light sources do not affect point probability
plots. For polygon displays, the light source is
always considered a planar source, while for
raytracing, it is always a point source. A planar
source does not appear to change with
position, while a point source does. An example of a point source at different distances from the
center of an orbital is shown in Figure 9.

The intensity of the light source and the color of the orbital determine the color that is drawn on
the screen. If the intensity have a value of 1.00, then a point on the orbital’s surface which is
normal to the light source will be exactly the specified color. A point on the orbital’s surface which
is 90° to the light source will be 1/2 of the specified color, and a point on the surface which is 180°
different will be black. Light sources are additive, which generally means that the total brightness
of all light sources should be around 1. Brightness above 1 can be specified, however, which can be
useful with probability density plots.

Figure 8: Lighting Dialog

Figure 9a: 4f0, one light source
located at -80,80,80 meters

Figure 9b: 4f0, one light source
located at -8,8,8 angstroms

Figure 9c: 4f0, one light source
located at -0.8,0.8,0.8 angstroms

11

The ambiance of the light source determines how shadows are computed. A light source with an
ambiance of 1.00 will not cast any shadows. An ambiance of zero will produce completely black
shadows. See Figure 10.

Figure 10a: One light source at
-90,90,90 meters with an intensity

of 1 and an ambiance of 1

Figure 10b: One light source at
-90,90,90 meters with an intensity

of 1 and an ambiance of 0.6

Figure 10c: Two light sources at
-90,90,90 meters with an

ambiance of 0.6, and at 30,30,70
meters with an ambiance of 0.4,

both with an intensity of 0.55

12

STEREO DISPLAY

In order to facilitate seeing the shape of
an orbital, it can be displayed in many
different ways. Lighting and color
help provide shape information, but
an actual three-dimensional display
works even better. There are many
ways of displaying a three-dimensional
display on a standard computer. Most
of these require special glasses or
hardware, but this is not necessarily an
expensive process. Orbital Viewer
supports seven different stereo (or
three-dimensional) viewing modes,
counting the standard monoscopic
display. These are selected in the
Display / Stereo menu option, which
displays the dialog shown in Figure 11.
Each of the stereo modes is detailed
along with information on where to
obtain or how to build viewing
hardware. Interocular distance and actual separation are discussed under the Stereoscope and
Interlaced modes, even though they apply to most of the different modes. Some of the
mathematics are discussed in the Imaging Mathematics section, starting on page 52.

All of the figures produced by Orbital Viewer are perspective drawings, with the degree of
perspective determined by the perspective value. The perspective value selects the default viewing
distance from the orbital. The camera view point is initially located away from the orbital at a
distance equal to the perspective value times the diameter of the orbital. The orbital is then sized to
fit the screen. This effectively determines the focal length of the “camera” which is used to view
the orbital. The smaller the perspective factor, the more distorted the orbital appears. Perspective
factors of 25 and larger will all appear very similar. See Figure 12 for examples.

Figure 11: Stereo Options Dialog

Figure 12a: 4f0 with a perspective
factor of 25

Figure 12b: 4f0 with a perspective
factor of 5

Figure 12c: 4f0 with a perspective
factor of 1

13

Monoscopic

The standard display mode is monoscopic. There are no stereo
options associated with it.

Stereoscope

One of the easiest ways to see a three-dimensional image is through
the use of a stereoscope. Normally, each eye sees a slightly different
perspective of a three-dimensional object. To make an object look
three dimensional on the computer screen, it is necessary to show
each eye a different view. A stereoscope relies on having two
different images, one for the left eye and one for the right. This
would normally appear on top of one another (see the Overlay

mode, below). By using a device called a stereoscope, the images can be displayed side by side. The
stereoscope uses mirrors to properly align the images.

Two values affect how the stereoscopic display is drawn. The interocular distance is the separation
between the eyes. This is the effective separation based on both the viewer’s own geometry and on
the dimensions of the stereoscope. It is given in pixels, since it is also dependant on the screen
resolution. The actual separation is the distance between the view points of the left and right
image. A larger actual separation will increase the depth of the orbital, but will also make it harder
to see properly through the stereoscope. The automatic mode uses a separation equal to 1/4 of the
orbital’s radius.

Building a Stereoscope

A good stereoscope can cost several hundred dollars, mainly due to the expense of the mirrors.
However, it is possible to construct a reasonable stereoscope very cheaply using items which are
available at many hardware stores. To build a simple stereoscope, the following materials:

• 2 pieces of mirror, 6 x 4 inches
• 2 pieces of mirror, 6 x 3 inches
• 2 pieces of pegboard, 11 x 3 inches, with 1/4 inch holes (holes spaced 1 inch apart)
• 7 dowels, 1/4 inch diameter, 6 1/2 inches long
• sturdy tape (such as strapping tape)
• black tape (such as electrical tape)
• wood glue (optional)

14

Figure 13 shows the stereoscope. These dimensions can be varied quite a bit, but the spacing
between the mirrors should be kept close to those given. For materials, any standard decorative
mirror will work. It can often be purchased as 12x12 inch tile and then cut with a glass cutter

Interlaced

Recently, LCD shutter glasses have become reasonably common.
Using these, the computer rapidly alternates between the left and
right image. The glasses open and close a shutter so that each eye
only sees the image meant for it. On the display, the image is
generally stored with the left and right image on alternate lines, and
an option exists to swap which lines are used with each side. The
hardware takes care of the rest.

As with the stereoscope display, the interlaced display requires an interocular distance. This is
actual distance between the viewer’s eyes in terms of pixels. Since the size of a pixel is dependant
on the monitor and on the graphics mode, this will vary between computers.

Figure 13: How to build a simple stereoscope

15

Red-Blue

The classic way to view something in three-dimensions is the use of
red-blue glasses. This type of image is also referred to as an anaglyph.
This works by using a filter to allow the left eye to only see the red
image, and the right eye to only see the blue image.

The interocular distance and actual separation work just like the
interlaced display mode.

Although glasses can be constructed from red and blue filters, they are generally inexpensive and
easy to come by. At the time of this writing, anaglyph glasses could be obtained from several
vendors advertising on the world wide web. Prices generally were a few dollars a pair.

Note that the colors don’t have to be limited to red and blue. The actual colors used can be
modified in the Color dialog.

Stereogram

Recently, the single image random dot stereogram (SIRDS) has been
used widely. This is a very simple technique which does not require
any special viewing hardware. Unfortunately, many people have
difficulty viewing stereograms. The stereogram works by
superimposing the images for the left and right eyes on top of each
other. Since this would be too hard to see otherwise, each point is
colored randomly, and points in the right image and made to match

the corresponding point in the left image.

Either a repeating random pattern can be used, or a source image can be selected. This image is
repeated horizontally, with the repetition occurring roughly at 1/6 the width of the interocular
distance.

The interocular distance is required, and works just like the interlaced display mode. No actual
separation is needed since the left and right images are not constructed separately. Instead, a
stereogram uses a single depth map, where each the height of each point in the image is used to
produce the figure.

Overlay

The overlay technique is essentially the same as the stereoscope
method, except that the left and right images are placed so that a
stereoscope is not required. Only people who are naturally very
good at seeing stereo will be able to merge the two image so that
they appear to be three-dimensional.

The interocular distance and actual separation work just like the
interlaced display mode.

16

Chromadepth

Chromadepth is a process which converts color into depth
information. This is done through the use of special Chromadepth
glasses, which are essentially refraction and diffraction lenses
combined into a single plastic film. Parts of the image which are
close to the viewer are colored red, while parts which are far away
are colored blue, with the colors travelling through the spectrum.
The interocular distance and actual separation are not used, since

only a single image is employed.

Only the colors from blue to red are used (not purple) due to the nature of computer monitors. To
make the spectrum perceptionally uniform, a hexcone color model is used. See the references in
Photogrammetric Engineering and Remote Sensing for some technical articles the hexcone color space
and on the Chromadepth glasses.

Chromadepth is a trademark of Chromatek, Inc. For more information about Chromadepth glasses,
contact Chromatek at 11450-F North Fulton Industrial Boulevard, Alpharetta, Georgia 30201-4703,
or email them at c3d@chromatek.com.

17

CAMERA

The orbital is viewed from a specific point in space.
This can be considered as a camera which has a
position and orientation. The effective focal length
is set using the perspective value in the stereo
dialog, see page 12. Additionally, the image size can
be explicitly set. The camera options are selected in
the Display / Camera menu option, which displays
the dialog shown in Figure 14.

The image size is normally the same as the current
window size. For the command line version of the
program, the default size is 640 x 480 pixels. If fixed
size is selected, the image will be generated at the
requested size, then scaled to fit the window. All
copying, saving, and calculations are done at this
fixed size. This has the advantage that if the
window size changes, a raytraced orbital does not
have to be recomputed.

Many of the functions in the program are based on
the radius or diameter of the orbital. For a surface probability plot, the radius is the distance from
the origin to the outermost point on the selected probability surface. For a probability density plot
or for an asymptote plot, the radius is located where a surface of probability would be located if it
had a probability of 1/1000th of the maximum probability in the orbital. For molecules, the
analyzed radius is sometimes larger than the actual radius would be by this definition.

If the camera is in the reset position, the coordinate system has x heading toward the right of the
screen, and y heading vertically up the computer screen. The coordinate system is always right
handed. The figure in the Camera Options Dialog shows the orientation, scale, and position of the
current camera.

The orientation of the camera is specified by three angles, where theta is the rotation about the z-
axis, phi is the rotation about the transformed x-axis (transformed by theta), and psi is the rotation
about the transformed y-axis (transformed by both theta and phi). Note that this is slightly
different from the angles used to specify atom orientation. In this case, the atom’s angles match the
angles which are commonly specified in the physics equations used to compute atomic orbitals,
while the camera angles match those which are commonly used in photogrammetry for
determining image orientation.

The position of the camera is based on the current orientation. It is located in the transformed
coordinate system (transformed by theta, phi, and psi). This allows the orientation to be modified
while still pointing the camera at the center of the orbital. The camera will point directly at the
center of the orbital if it has an x and y coordinate of zero.

Figure 14: Camera Options Dialog

18

CUTAWAY

It is often difficult to see the internal structure of an
orbital. To facilitate viewing, a cutaway can be
defined which removes part of the orbital. The
cutaway options are selected in the Display /

Cutaway menu option, which displays the dialog
shown in Figure 15.

The cutaway can either be a plane, a corner, or a
wedge, which removes 1/2, 1/4, or 1/8 of the orbital,
respectively. This can also be inverted, leaving only
1/2, 1/4, or 1/8 of the orbital. Inverting the cutaway
leaves exactly what would have been taken away
without the inversion. See Figure 16.

When a probability surface is plotted, the cutaway can either create a
surface at the cutaway, or it can leave the surface “open” which allows a
sort of view into the orbital. See Figure 17.

The orientation and position of the cutaway are specified in the orbital’s
coordinate system. The orientation of the cutaway is specified by three
angles, where alpha is the rotation about the z-axis, beta is the rotation
about the transformed x-axis (transformed by alpha), and gamma is the
rotation about the transformed z-axis (transformed by both alpha and
beta). The position of the cutaway determines exactly which part of the
orbital will be removed. It can be located anywhere in space.

Figure 15: Cutaway Options Dialog

Figure 16a: 3s0, planar
cutaway

Figure 16b: 3s0, corner
cutaway

Figure 16c: 3s0, wedge
cutaway

Figure 16d: 3s0, inverted
wedge cutaway

Figure 17: 3s0, planar
cutaway (as in Figure 16a)
without cutaway surface

19

RENDERING METHOD

Orbital Viewer can draw orbitals in any of
three ways: point density plots, polygon
surface of probability approximations, and
raytracing. In the graphical version of Orbital
Viewer, it is often useful to have a lower
quality image which can be readily
manipulated, which is then replaced by a
higher quality image once the orbital has
been selected. The render options are selected
in the Display / Render menu option, which
displays the dialog shown in Figure 18.

If quick rendering is turned off, only the precise method is used. If it is turned on, then the orbital
will be drawn in the quick mode first followed by the precise mode.

Figure 18: Rendering Method Dialog

20

POINT DRAWING MODE

Point drawing mode is generally the fastest for the
computer to draw. It is not necessarily the fastest to
compute. The number of points used in a point plot can
be set by selecting the Display / Point Options menu, see
Figure 19. A point drawing is always a probability density
plot, with more points located in parts of the orbital with
a higher probability. The points are computed by
choosing a point at random, and keeping it only if a
randomly generated number is lower than the probability
at that point.

An example of a point drawing is shown in Figure 20. The size of
the points can be modified in the Preferences Dialog.

Any positive number of points can be generated, provided that the
computer has enough memory. Lighting does not effect the color
of the point, only phase. Note that if the resulting data is saved as a
VRML file, some VRML readers can only handle a few thousand
points.

Figure 19: Point Options Dialog

Figure 20: 4f0 point probability
plot with 10,000 points

21

POLYGON DRAWING MODE

The polygon drawing mode is a
surface of probability display. It
is generally fast to compute and
fast to manipulate. Options for
this mode are specified by
selecting the Display / Polygon

Options menu. Selecting this
displays the dialog shown in
Figure 21.

Since this displays a surface of
constant probability, this
probability is specified using Ψ2.
This is specified as a logarithmic number, since it is often very small. A probability which is more
negative will produce a surface further from the center of the orbital. If the probability is too
positive, all or some of the orbital may not appear. See Figure 22.

The Auto button will select a value which produces a pleasant figure. This option also adjusts the
density (see below) to the minimum value needed to probably compute the surface.

An opacity of 100 % produces a solid surface. An opacity of 0 % will
completely hide the surface. Opacities in between these two values allow
rear portions of the orbital to be seen. See Figure 23. The opacity is
simulated on the screen by only drawing the specified percentage of the
pixels which would normally appear. Both the front and back surface of
the orbital have this opacity, so that a opacity of 50 % will effectively
block 75 % (all but (50 %)2) of the view of what is behind it. To use true
opacity, raytracing must be used, see page 24.

To compute the polygons used in the surface of the orbital, a two step
process is used. First, the space from the center of the orbital out to the
maximum radius of the orbital is divided into a set of tetrahedrons. If the

Figure 21: Polygon Options Dialog

Figure 22a: 4f0, Ψ2=10-3.6 Figure 22b: 4f0, Ψ2=10-3.8 Figure 22c: 4f0, Ψ2=10-4.0 Figure 22d: 4f0, Ψ2=10-4.7

Figure 23: 4f0, Ψ2=10-4.0,
both phases at 50 %

opacity

22

probability along any leg of a tetrahedron crosses through the specified value of Ψ2, then a vertex is
located at the exact crossing point. If two vertices are too close together, they are combined. This
prevents triangles of very small size from being created. This number of tetrahedrons is affected by
the density parameter. After a set of triangles defining the surface is created, the triangles are
refined. This is done by dividing long edges of the triangle into two, creating a vertex and generally
changing two triangles into four. The new vertex is “snapped” to the selected surface of probability.
This process continues until no triangle leg is too long based on the refinement parameter.

For computation reasons, the density must be an even integer that is at least six. In order to
accurately compute the surface of probability, the density should be the minimum of (n-l)*2,
(l-|m|)*2, and |m|*2. If the surface has holes or is too rough, increasing the density will fix it.
Generally densities which are more than twice the minimum value, as specified above, do not
produce substantially different results. The density will also determine how well a cutaway appears
in a polygon surface plot. For examples of different density settings, see Figure 24.

Refining the polygons has two major effects. It makes the all the polygons roughly the same size,
and it smoothes the surface of the orbital. A refinement of zero will not change the polygons as
generated by the selected density. A non-zero refinement ensures that all triangles have sides
shorter than the orbital’s radius divided by the density and divided by the refinement parameter.
Examples of different refinements are given in Figure 25. Doubling the refinement quadruples the
number of triangles.

Figure 24a: 5g1 with a density of 6
and a refinement of 0

Figure 24b: 5g1 with a density of
8 and a refinement of 0

Figure 24c: 5g1 with a density of
12 and a refinement of 0

Figure 25a: 5g1 with a density of 8
and a refinement of 0

Figure 25b: 5g1 with a density of
8 and a refinement of 1.0

Figure 25c: 5g1 with a density of 8
and a refinement of 2.0

23

There are three styles in which a set of polygons can be drawn. Normally, the polygons are solid,
with the color based on the light source. They can also be drawn as a wireframe, or as just the
vertices (points). The wireframe mode best shows what actual polygons are used to make up a
surface. The point mode produces something like the point density plot, but with a surface instead.
See Figure 26.

Figure 26a: Solid 5g1 Figure 26b: Wireframe 5g1 Figure 26c: Point 5g1

24

RAYTRACING DRAWING MODE

The raytrace drawing mode has
the most options and is the
highest quality. It is also the
slowest. Options for this mode
are specified by selecting the
Display / Raytrace Options

menu. Selecting this displays
the dialog shown in Figure 27.
This mode can display both
surfaces of probability, like the
polygon drawing mode, and
probability density plots, like
the point drawing mode.

If a surface of constant
probability is displayed
(determined by the surface and
interior opacity), this
probability is specified using Ψ2.
This is specified in the manner
detailed under the section on
Polygon Drawing Mode, see
page 21 and also see Figure 22.

To create a probability density plot, the probability opacity must be non-zero. To compute the
color of any pixel, a ray is tracked from the camera along the appropriate line in space. This is done
in a series of finite steps, with the specified number of steps across the orbital’s radius. The
probability is evaluated at each step. If the probability of a step has the maximum probability in
the orbital, then the opacity of that step is the specified probability opacity. If the probability is
zero, then that step is entirely transparent. Similarly, all steps’ opacity is directly proportional to
the probability at that step. This opacity calculation technique is also to compute how much light
is provided by each light source. As such, shadows consume a large amount of computing power
when used with probability opacity. If no light sources are used, the plot resembles actual
measurements of atomic orbitals, such as those made through laser techniques. See Figure 28 for
some examples.

Figure 27: Raytrace Options Dialog

25

If the surface probability is non-zero, the surface specified by the Ψ2 value will be drawn. The
opacity calculations treat this surface as being infinitely thin (since it is). As such, the opacity does
not change based on the viewing angle. The opacity affects both the front and back surface of the
orbital, such that a 50 % opacity, will only transmit 25 % of the what is behind that lobe of the
orbital. See Figure 29 for examples.

In addition to drawing the positive and negative phases of the orbital,
the asymptotes can also be shown. This is similar to drawing a surface
of probability with Ψ2=0. Although the asymptotes are infinitely thin,
the opacity is drawn such that it is proportional to the viewing angle,
such that an asymptote which is oblique in the picture will appear
thicker. See Figure 30.

The interior opacity settings are used to provide similar effects in the
positive and negative phases, where the thickness of the phase dictates
the opacity of the orbital. The interior opacity is set as a %% value,
where a value of 1 %% = 0.0001. As with the probability opacity, the
orbital is analyzed in a series of finite steps, with the specified number
of steps across the orbital’s radius. If a point is within the surface of probability based on the Ψ2

value, then that step has the specified opacity. As with probability opacity, using light sources with

Figure 28a: 4f0, 5 % probability
density plot with no light sources

Figure 28b: 4f0, 5 % probability
density plot with one light source

Figure 28c: 4f0, 10 % probability
density plot with one light source

Figure 29a: 4f0, 25 % surface
opacity

Figure 29b: 4f0, 50 % surface
opacity

Figure 29c: 4f0, 100 % surface
opacity

Figure 30: 4f0, 50 % surface
opacity, 30 % asymptote

surface opacity

26

shadows vastly increases the amount of computation required. Some examples are shown in Figure
31.

Another effect which can be applied to the orbital is an index of refraction. Ordinary space has an
index of refraction of 1.00. The orbital can appear to be made of “glass” by giving it a higher index,
or, the orbital can be a cavity within a “glass” space by using an index less than 1. When an index of
refraction is applied to a probability density plot, the specified index exists at the point of highest
probability. This index approaches 1 as the probability approaches zero. The asymptotes are
treated as having a thickness equal to the orbital’s radius divided by the specified step size for
purposes of refracting light. Some examples are shown in Figure 32.

In all of the figures above, the positive and negative phases have been treated equally. This is not
required. By setting one phase’s probability to zero, only the other phase will be shown. This can
also be used to show one phase with a probability density plot and the other with a surface of
probability.

Probability density plots, asymptotes plots, and interior probability plots all work by stepping
along a ray for each pixel. The probability is analyzed at each point, and the opacity, direction of
the ray, and color is evaluated. The number of steps specified is the number taken along the radius
of the orbital. This number can be varied, which results in more or less accurate displays. It has a

Figure 31a: 4f0, 10 %% interior
opacity with one light source

Figure 31b: 4f0, 25 %% interior
opacity with one light source

Figure 31c: 4f0, 50 %% interior
opacity with one light source

Figure 32a: 4f0, 0.9 index
of refraction, 50 %

surface opacity.
Compare to Figure 29b

Figure 32b: 4f0, 1.1 index
of refraction, 50 %

surface opacity

Figure 32c: 4f0, 1.1 index
of refraction, 50 %

surface opacity, 30 %
asymptote opacity.

Compare to Figure 30

Figure 32d: 4f0, 2.0 index
of refraction, 5 %

probability opacity.
Compare to Figure 28b

27

direct effect on the time it takes to compute the orbital. If light sources with shadows are used,
doubling the number of steps will square the amount of computations required. To keep the same
total opacity, as the number of steps decreases, it is necessary to increase the specified opacity.
Examples with different step sizes are shown in Figure 33. In all cases (1-opacity)steps is a constant.

The orbital is first drawn very coarsely and then refined. This allows an initial view of the orbital
much more quickly than would otherwise be obtained from raytracing. The first pass is drawn
with points spaced every 16x16 pixels. Auto brightness can be applied at this point. The second
pass draws all points spaced every 4x4 pixels. The points in the first pass are not recomputed. A
third pass draws every pixel, but some may be approximated if coarse rendering is turned on. If
antialiasing is used, a fourth pass analyzes the orbital down to 1/4 pixel resolution.

The color of each pixel is dependant on the selected orbital and the selected light source. If a low
opacity is used, the resultant picture can be very dim. Specifying auto brightness will adjust the
color such that the brightest values will be close to the maximum possible. The necessary
brightness is calculated by coarsely drawing the orbital at normal brightness, then adjusting it so
that the coarse drawing will be at a good brightness. This may permit pixels which are
oversaturated (too bright) if there are features which are too small to show up on the coarse
drawing.

Coarse rendering can be much faster than complete rendering, since not all the points must be
independently computed. After each point on a 4x4 pixel grid is computed, the remaining points
are drawn. If the four points on the 4x4 grid are similar enough, then the pixels within that 4x4e
region are interpolated from the corners. Similarity is defined as being within 15 color units of each
other in all three (red, green, and blue) color channels. There are 256 color units available to each
pixel (each can range from 0 to 255).

Figure 33a: 4f0, 92.3 % probability
density plot with 20 steps

Figure 33b: 4f0, 40.1 % probability
density plot with 100 steps

Figure 33c: 4f0, 5.0 % probability
density plot with 1000 steps

28

Antialiasing can be applied after every pixel is
computed. If adjacent pixels are non similar,
then that region of the orbital is computed using
an oversampling technique. This is done to an
accuracy of 1/4 pixel. This means that near a
color transition, up to 16 times as many
calculations are required to compute an
antialised pixel. Two points are considered
similar if they are within 4 color units of each
other in all three color channels. Figure 34
shows an orbital with and without antialiasing.

Figure 34a: 4f0, without
antialiasing

Figure 34b: 4f0, with
antialiasing

29

ASYMPTOTE DRAWING MODE

With any of the other drawing modes, the orbital’s
asymptotes can also be drawn. This is done
simultaneously in the raytracing drawing mode. For
point and polygon drawing modes, the asymptotes are
computed as a set of polygons. Options for this are
specified by selecting the Display / Asymptote Options

menu. Selecting this displays the dialog shown in Figure
35. This options are essentially identical to those for the
polygon drawing mode. See page 21 for more
information. Figure 35: Asymptote Options Dialog

30

SEQUENCES

One of the interesting ways to view an
orbital or to observe how a given
parameter affects an orbital is to draw a
sequence of frames and create an
animation of it. This can be done using
the Display / Play Sequence menu item,
which displays the dialog shown in
Figure 36.

Two, three, or four orbitals can be used
to specify the sequence. These orbitals
can have any desired values for any
parameters. Each of the specification
orbitals also has an integer frame
number associated with it. The value
of the orbital along with the frame
number is used to determine the value
which will be used during the
sequence. Although these are requested
as files in the graphical interface
version of the program, the actual sequence specification is stored in a single file along with the
standard orbital information. See the section on input file formats, page 31, for more information.

Interpolation

The sequence can start and end on any integer frame values. When creating the sequence, all
frames between the starting and ending frames, inclusive, are drawn. For each frame, the orbital is
determined by interpolating from the two, three, or four orbital specification files.

Figure 36: Play Sequence Dialog

31

If only two orbitals are used in the sequence
specification, the interpolation is linear.

Linear interpolation satisfies the equation

BAfv += (1)

where v is the interpolated value, f is the frame
number, and A and B are constants determined
based on satisfying the equation for the values and
frame numbers from the orbital specification files.
An example of linear interpolation is shown in
Graph 1. The Bezier setting has no effect on linear
interpolation.

If three orbitals are used in the sequence
specification, the interpolation can be either
quadratic or a three-point Bezier spline.

Quadratic interpolation satisfies the equation

CBfAfv ++= 2 (2)

where v is the interpolated value, f is the frame
number, and A, B, and C are constants determined
based on satisfying the equation for the values and
frame numbers from the orbital specification files.
This is always a parabola.

A three-point Bezier spline satisfies the
simultaneous equations

DpCpBpAv
DCpBpApf

′+′+′+′=

+++=
23

23

(3)

where p is a parametric value ranging from 0 to 1, v is the interpolated value, and f is the frame
number. The values A, B, C, D, A’, B’, C’, and D’ are defined as

1

12

12

13

33
33

fD
ffC
ffB

ffA

=
−=
+−=

−=

1

12

12

13

33
33

vD
vvC
vvB

vvA

=′
−=′
+−=′

−=′

(4)

where f1, f2, and f3 are the frame numbers and v1, v2, and v3 are the values of the three specification
points.

0.6

0.8

1

1.2

1.4

1.6

0 40 80 120 160
Frame

Va
lu
e

Linear

Graph 1: Linear interpolation between a value of 1
at frame 0 and 1.5 at frame 160

0.6

0.8

1

1.2

1.4

1.6

0 40 80 120 160
Frame

Va
lu
e

Quadratic

Bezier

Graph 2: Quadratic and three-point Bezier
interpolations between a value of 1 at frame 0, 1.5

at frame 80, and 1.2 at frame 160

32

The curve produced by the Bezier spline always lies entirely within the triangle formed by the
three specification points. The slope of the Bezier spline at the first point is the same as that of a line
between the first and middle points, and the slope at the last point is the same as a line between the
last and middle points.

An example and comparison of quadratic interpolation and three-point Bezier interpolation are
shown in Graph 2.

If four orbitals are used in the sequence
specification, the interpolation can be either cubic
or a four-point Bezier spline.

Cubic interpolation satisfies the equation

DCfBfAfv +++= 23 (5)

where v is the interpolated value, f is the frame
number, and A, B, C, and D are constants
determined based on satisfying the equation for
the values and frame numbers from the orbital
specification files.

A four-point Bezier spline satisfies the simultaneous
equations specified in Equation (3), differing in that
the values A, B, C, D, A’, B’, C’, and D’ are defined as

1

12

123

1234

33
363

33

fD
ffC

fffB
ffffA

=
−=

+−=
−+−=

1

12

123

1234

33
363

33

vD
vvC

vvvB
vvvvA

=′
−=′

+−=′
−+−=′

(6)

where f1, f2, f3, and f4 are the frame numbers and v1, v2, v3, and v4 are the values of the four
specification points. This is identical to the three-point version if the middle two specification
points are equal.

The curve produced by the Bezier spline always lies entirely within the quadrilateral formed by the
four specification points. The slope of the Bezier spline at the first point is the same as that of a line
between the first and second points, and the slope at the last point is the same as a line between the
third and last points.

An example and comparison of cubic and four-point Bezier interpolations are shown in Graph 3.

When a frame is calculated which lies outside of the specification range, the values are extrapolated
using the appropriate linear, quadratic, cubic, or Bezier function. The Bezier function is not
uniquely defined outside of the specification range, and is unpredictable in this extrapolation. The
order of the specification orbitals has no effect on linear, quadratic, or cubic interpolation. It does,
however, have a significant effect on Bezier interpolation.

0.6

0.8

1

1.2

1.4

1.6

0 40 80 120 160
Frame

Va
lu
e

Cubic

Bezier

Graph 3: Cubic and four-point Bezier
interpolations between a value of 1 at frame 0, 0.8
at frame 40, 1.5 at frame 120, and 1.2 at frame 160

33

Incremental Position

If incremental position is turned on, then the camera location and orientation is not interpolated
using the above functions. All other values are interpolated, including cutaway and lighting
positions and orientations. Instead of interpolating the camera position, the camera position is
determined by using the only the first and second specification orbitals. The position and
orientation is calculated using the equation

()()1211 vvttvv −−+= (7)

where t is the current frame, t1 is the frame number of the first specification orbital, v1 is the
position or orientation value of the first specification orbital, v2 is the position or orientation value
of the second specification orbital, and v is the position or orientation value for the current frame.
Note that the frame number of the second specification orbital is not used in this calculation

The incremental position mode provides an easier way to rotate an orbital. Interpolation between
angles does not necessarily result in the desired output since all angles are in the range of [0,2π)
radians or [0,360) degrees. The difference between the second and first specification orbitals is used
as a step for each frame.

Interpolated Values

The number of atoms and light sources will be the minimum of any orbital specification file.

The following parameters are interpolated between frames:

Colors – background, positive phase, negative phase, and asymptote
Camera – position, orientation, and fixed image width and height
Atoms – mass, n, l, m, number of protons, factor, position, and orientation
Light sources – intensity, ambiance, position, and orientation
Asymptote – opacity and density
Cutaway – position and orientation
Points – number
Polygons – Ψ2, density, refinement, and opacity
Raytrace – Ψ2, probability opacity, surface opacity, interior opacity, index of refraction, number

of steps
Stereo display – interocular distance, separation, and perspective

The following parameters are copied from the first orbital specification:

Light sources – local
Cutaway – type, surface, and inversion
Raytrace – auto brightness, antialias, and coarse rendering
Stereo – mode, auto separation, and stereogram image

34

Sequence Output

A sequence generates a series of frames. These pictures can be saved. The graphical version of
Orbital Viewer can save each frame as a binary PPM, TIF, or BMP file, or can save the entire
sequence as an AVI file. The command line version of Orbital Viewer outputs ASCII PPM or VRML
files. See the section of output file formats, page 42, for more details.

If a sequence is saved as a binary image file (PPM, TIF, or BMP), the file name is determined by
appending the frame number to the base file name and the file type as an extension. For example, if
the base file name is C:\TEMP\ORB, and the sequence is being saved as PPM files, then frame 26 will be
stored in the file C:\TEMP\ORB26.PPM. For AVI files, the file name is only determined using the base file
name and the file type extension. In the preceding example, this would produce the file
C:\TEMP\ORB.AVI.

When an AVI file is created, it is created in an uncompressed format. The number of frames per
second can be specified. If the file already exists, frames will be appended to it. If the file does not
have frames of the same width, height, and frames per second, the sequence is not saved.
Uncompressed AVI files can be compressed on some systems using the Display / Compress AVI

menu function.

See Figure 37 for some sample frames from a sequence.

Figure 37: Frames 68 through 75 from a sequence which varies camera orientation and Ψ2 of a 4f0 orbital

35

FILE FORMATS – INPUT

Orbital Viewer can read two different file formats. Orbital specification files use the .ORB
extension, and contain all the information necessary to create an orbital or orbital sequence.
Orbital Viewer files use the .OV extension, and contain the same information as the .ORB files, plus
additional binary information which allows computation to be resumed from the point at which it
was saved.

The .OV files are version dependant, and will be treated exactly like .ORB files if the version of
Orbital Viewer which created them is not the same as the version used to read them. They are
always treated like .ORB files with the command line version of Orbital Viewer. The binary part of
the .OV files is not discussed in this manual. For information on this file format, contact the author.

Orbital Specification Files (.ORB)

Orbital Specification files are plain text (ASCII) files which contain a header phrase, followed by a
list of keywords with each keyword followed either by a number, by a single phrase, or by braces {}
contain another list of keywords. For example, the keyword “CameraCenterZ(m)” might be
followed by the number “7.14388974643e-008”, the keyword “RenderMode” by the phrase
“Raytrace”, and the keyword “Atom” by “{ n 4 l f m 0 }”, where “n”, “l”, and “m” are
themselves keywords.

Keywords, numbers, phrases, and braces are all separated by white space (tabs, spaces, carriage
returns, line feeds, etc.). This white space is arbitrary.

Unless otherwise noted, keywords can be in any order within the file or within a set of braces {}.
Also unless otherwise noted, the keyword should not be repeated. There are no drawbacks to
repeating a keyword except that only the last instance of the keyword will actually be used. All
keywords are optional.

Case of keywords and phrases does not matter.

Numbers can be specified as integers (e.g., “6”), rationals (e.g., “6.5”), exponentials (e.g., “6.5e-3”), or
as hexadecimal (e.g., “0x3C”). Hexadecimal numbers are always prefixed by “0x”. Any form can be
used at any time a number is required after a keyword.

In some instances, phrases can be free form text. In this case, the phrase is surrounded by double
quotes “”, and all characters are allowed within the quotes except for more quotes. Any phrase can
be surrounded by quotes, if desired.

Comments can be included after any white space by starting them with a number sign (#).
Everything after the number sign is ignored until a carriage return or line feed is encountered.
Comments can not occur within phrases surrounded by double quotes.

The file begins with the header phrase “OrbitalFileV1.0”. Orbital Viewer (.OV) files differ in that
they begin with the header phrase “OrbitalViewerFileV1.0”.

Below is a list of all keywords and the arguments which must follow them:

36

AsymptoteColor – (number) - the 0xRRGGBB color of to use for asymptotes. This is in the range
of 0 to 16777215 (0xFFFFFF), or –1 to use the default color. Example: 0x808080.

Asymptotes – (keyword list) – this has the following keywords and arguments:

Density – (number) – the density of asymptote polygons. This is an even integer greater
than or equal to 6.

Opacity – (number) – the opacity of the asymptote, between 0 and 1.

Style – (phrase) – Solid | Wireframe | Points

Atom – (keyword list) – the atom keyword can be repeated any number of times. For a molecular
orbital, there will be at least two Atom statements. This has the following keywords and
arguments:

AngleAlpha(rad) – (number) – atom orientation angle alpha in radians.

AngleBeta(rad) – (number) – atom orientation angle beta in radians.

AngleGamma(rad) – (number) – atom orientation angle gamma in radians.

CenterX(m) – (number) – position of atom’s center along the x axis in meters.

CenterY(m) – (number) – position of atom’s center along the y axis in meters.

CenterZ(m) – (number) – position of atom’s center along the z axis in meters.

Factor – (number) – probability multiplicand factor, usually –1 or 1.

l – (number) – orbital quantum number, l. Integer between 0 and n-1.

m – (number) – angular momentum quantum number, m. Integer between -l and +l.

Mass(kg) – (number) – mass of atom in kilograms.

n – (number) – principal quantum number, n. Positive integer. On most computers this
must be less than or equal to 30.

Neutrons(N) – (number) – number of neutrons in atom. This is a non-negative integer.

Protons(Z) – (number) – number of neutrons in atom. This is a positive integer.

BackgroundColor – (number) - the 0xRRGGBB color of to use for the background. This is in the
range of 0 to 16777215 (0xFFFFFF), or –1 to use the default color. Example: 0x000000.

CameraCenterX(m) – (number) – position of camera’s center along the transformed x axis in
meters. The transformation is by the camera angles theta, phi, and psi.

CameraCenterY(m) – (number) – position of camera’s center along the transformed y axis in
meters. The transformation is by the camera angles theta, phi, and psi.

CameraCenterZ(m) – (number) – position of camera’s center along the transformed z axis in
meters. The transformation is by the camera angles theta, phi, and psi.

37

CameraCx – (number) – this is the camera’s focal length divided by the pixel size. It is a unitless
quantity, and is typically in the 1000-10000 range.

CameraPhi(rad) – (number) – camera orientation angle phi in radians.

CameraPsi(rad) – (number) – camera orientation angle psi in radians.

CameraTheta(rad) – (number) – camera orientation angle theta in radians.

Cutaway – (keyword list) – this has the following keywords and arguments:

AngleAlpha(rad) – (number) – cutaway orientation angle alpha in radians.

AngleBeta(rad) – (number) – cutaway orientation angle beta in radians.

AngleGamma(rad) – (number) – cutaway orientation angle gamma in radians.

Invert – (phrase) – No | Yes

PositionX(m) – (number) – cutaway center position along the x axis in meters.

PositionY(m) – (number) – cutaway center position along the y axis in meters.

PositionZ(m) – (number) – cutaway center position along the z axis in meters.

Surface – (phrase) – No | Yes

Type – (phrase) – None | Plane | Corner | Wedge

DefaultPerspective – (number) – perspective factor to switch to when the reset position
function is selected. This is a positive number.

EndOfFile – (any) – all data after this keyword and argument is ignored. The argument can have
any value, but it must exist. This is used in Orbital Viewer .OV files to signal the end of
the orbital specification and the beginning of the binary segment.

FileName – (phrase) – this is typically the full pathname of the file, but it can be any text.
Example: “C:\ORB\PDF\FIG10C.ORB”

FixedHeight – (number) – the number of pixels in height of a fixed sized camera image. If
FixedSize is set to Yes, this should be at least 2.

FixedSize – (phrase) – No | Yes

FixedWidth – (number) – the number of pixels in width of a fixed sized camera image. If
FixedSize is set to Yes, this should be at least 2.

Frame – (number) – this is the starting/current frame of a sequence. If this is within the keyword
Sequence’s braces, then it is the frame number for that sequence specification. It can be
any integer.

FramesPerSecond – (number) – this is the number of frames per second stored in an AVI file
created by a sequence. It is a positive integer.

38

LastFrame – (number) – the ending frame of a sequence. This can be any integer.

LastHeight – (number) – the height in pixels of the last image drawn in a window. This is the
height of the window if a fixed camera size is not used or raytracing is not the current
rendering mode. Otherwise, this is the fixed height.

LastWidth – (number) – the width in pixels of the last image drawn in a window. This is the
width of the window if a fixed camera size is not used or raytracing is not the current
rendering mode. Otherwise, this is the fixed width.

Light – (keyword list) – the light keyword can be repeated any number of times. This has the
following keywords and arguments:

Ambience – (number) – the ambiance of this light source, between 0 and 1.

Intensity – (number) – the intensity of the light source. This is a nonnegative number,
typically between 0 and 1.

Local – (phrase) – No | Yes

PositionX(m) – (number) – light source position along the x axis in meters.

PositionY(m) – (number) – light source position along the y axis in meters.

PositionZ(m) – (number) – light source position along the z axis in meters.

NegativeColor – (number) - the 0xRRGGBB color of to use for negative phases. This is in the
range of 0 to 16777215 (0xFFFFFF), or –1 to use the default color. Example: 0xFF8000.

Perspective – (number) – this is the current perspective factor. The orbital will fill the screen
when the camera is at a distance equal to this number multiplied by the orbital’s
diameter. This is a positive number.

Points – (keyword list) – this has the following keywords and arguments:

Points – (number) – this is the number of points generated in a point density plot. It is a
positive integer.

Polygons – (keyword list) – this has the following keywords and arguments:

Density – (number) – the initial density of the polygons. This is an even integer greater
than or equal to 6.

NegativeOpacity – (number) – the opacity of the negative phase, between 0 and 1.

PositiveOpacity – (number) – the opacity of the positive phase, between 0 and 1.

Refinement – (number) – polygons will be refined until the length of all triangle legs is
shorter than the orbital’s radius divided by the density and divided by this
parameter. This is a non-negative number.

Style – (phrase) – Solid | Wireframe | Points

39

PositiveColor – (number) - the 0xRRGGBB color of to use for positive phases. This is in the
range of 0 to 16777215 (0xFFFFFF), or –1 to use the default color. Example: 0x0000FF.

PreviewColor – (number) - the 0xRRGGBB color of to use for the lighting and cutaway previews.
This is in the range of 0 to 16777215 (0xFFFFFF), or –1 to use the default color. Example:
0x8080FF.

Psi^2(log10) – (number) – the factor used to determine which surface of probability is drawn in
polygon mode and when the surface opacity is non-zero in raytracing mode. This is
typically a negative number, but can be any value.

QuickRenderMode – (phrase) – Points | Polygons | Raytrace

Raytrace – (keyword list) – this has the following keywords and arguments:

Antialias – (phrase) – No | Yes

AsymptoteOpacity – (number) – the opacity of the asymptote, between 0 and 1.

AsymptoteRefraction – (number) – the index of refraction of the asymptote. This is a
positive number.

AutoBrightness – (phrase) – No | Yes

Coarse – (phrase) – No | Yes

NegativeRefraction – (number) – the index of refraction of the negative phase. This is a
positive number.

NegInteriorOpacity – (number) – the interior opacity of the negative phase per step,
between 0 and 1.

NegProbOpacity – (number) – the probability opacity of the negative phase per step,
between 0 and 1.

NegSurfaceOpacity – (number) – the surface opacity of the negative phase, between 0
and 1.

PosInteriorOpacity – (number) – the interior opacity of the positive phase per step,
between 0 and 1.

PositiveRefraction – (number) – the index of refraction of the positive phase. This is a
positive number.

PosProbOpacity – (number) – the probability opacity of the positive phase per step,
between 0 and 1.

PosSurfaceOpacity – (number) – the surface opacity of the positive phase, between 0
and 1.

Steps – (number) – the number of steps used in computing probability and interior
opacity based figures. This is a positive number.

40

RenderMode – (phrase) – Points | Polygons | Raytrace

Scale(m) – (number) – the scale of the orbital. This is the diameter of the orbital in meters. It is
used to determine how far to pan or zoom and orbital when the mouse is used to
manipulate it.

Sequence – (keyword list) – the sequence keyword can be repeated from two to four times. If
there is only one Sequence keyword, an actual sequence is not defined. Sequences use
exactly the same keywords as the entire orbital file, except they do not recognize the
Sequence keyword (no recursion).

SequenceBase – (phrase) – this is the full path and root name of the sequence output file(s).
Example: “C:\TEMP\SEQ”

SequenceBezier – (phrase) – No | Yes

SequenceFileType – (phrase) – PPM | TIF | BMP | AVI

SequenceIncrement – (phrase) – No | Yes

Stereo – (keyword list) – this has the following keywords and arguments:

AutoSeparation – (phrase) – No | Yes

BlueColor – (number) - the 0xRRGGBB color of to use for the ‘blue’ color of RedBlue mode
stereo images. This is in the range of 0 to 16777215 (0xFFFFFF), or –1 to use the
default color. Example: 0x0000FF.

ImageName – (phrase) – this is the full pathname of an image file used for stereograms.
Example: “C:\ORB\DATA\PATTERN.JPG”. It is not used with the command line
version of Orbital Viewer.

Interocular – (number) – the interocular distance in pixels for all stereo modes except
the stereoscope mode. This is a non-negative number.

Mode – (phrase) – Monoscopic | Stereoscope | Interlaced | RedBlue | Stereogram |
Overlay | Chromadepth

RedColor – (number) - the 0xRRGGBB color of to use for the ‘red’ color of RedBlue mode
stereo images. This is in the range of 0 to 16777215 (0xFFFFFF), or –1 to use the
default color. Example: 0x0000FF.

RedSide – (phrase) – Left | Right

Separation(m) – (number) – The separation between the left and right view points in
meters. This is a positive number.

StereoscopeInter – (number) – the interocular distance in pixels for the stereoscope
mode. This is a non-negative number.

TopScanline – (phrase) – Left | Right

41

UseImage – (phrase) – No | Yes This is not used with the command line version of Orbital
Viewer.

UseQuickRender – (phrase) – No | Yes

Example File

This is a complete orbital file as saved by Orbital Viewer. It is the orbital specification for Figure 10c.

OrbitalFileV1.0
DefaultPerspective 25
BackgroundColor 0xFFFFFF
UseQuickRender Yes
QuickRenderMode Raytrace
RenderMode Raytrace
FixedSize Yes
FixedWidth 144
FixedHeight 144
FileName "C:\ORB\pdf\fig10a.orb"
Scale(m) 2.85755707985e-009
Perspective 25
LastWidth 144
LastHeight 144
CameraCenterX(m) 0
CameraCenterY(m) 0
CameraCenterZ(m) 7.14388974643e-008
CameraTheta(rad) -1.36135709286
CameraPhi(rad) -1.04719769955
CameraPsi(rad) 0.907571196556
CameraCx 3239.99975586
Atom { # Atom 1
 n 4
 l f
 m 0
 Neutrons(N) 0
 Protons(Z) 1
 Mass(kg) 1.6605402e-027
 }
Light { # Light 1
 PositionX(m) -90
 PositionY(m) 90
 PositionZ(m) 90
 Intensity 0.55
 Ambience 0.6
 Local No
 }
Light { # Light 2
 PositionX(m) 30
 PositionY(m) 30
 PositionZ(m) 70
 Intensity 0.55
 Ambience 0.4
 Local No
 }
Psi^2(log10) -4

Cutaway { # Cutaway 1
 Type None
 Surface Yes
 Invert No
 }
Stereo {
 Mode Monoscopic
 TopScanline Left
 RedSide Left
 AutoSeparation Yes
 UseImage No
 Interocular 250
 StereoscopeInter 800
 Separation(m) 5.29177249e-010
 }
Points {
 Points 10000
 }
Polygons {
 Density 8
 Refinement 1.3
 PositiveOpacity 1
 NegativeOpacity 1
 Style Solid
 }
Asymptotes {
 Density 0
 Opacity 0
 Style Solid
 }
Raytrace {
 PosProbOpacity 0
 PosSurfaceOpacity 1
 PosInteriorOpacity 0
 NegProbOpacity 0
 NegSurfaceOpacity 1
 NegInteriorOpacity 0
 AsymptoteOpacity 0
 PositiveRefraction 1
 NegativeRefraction 1
 AsymptoteRefraction 1
 Steps 1000
 AutoBrightness No
 Coarse No
 Antialias Yes
 }

42

FILE FORMATS - OUTPUT

Orbital Viewer can output files in several different formats. The graphical version of Orbital Viewer
can output orbital specification files (.ORB), Orbital Viewer files (.OV), binary PPM files, TIFF files,
BMP files, AVI files, VRML version 1 files, or partial Digistar II files. The command line version of
Orbital Viewer outputs either ASCII PPM files or VRML version 1 files.

Orbital Specification Files (.ORB)

This file format is fully detailed in the section on input file formats. See page 35.

Orbital Viewer Files (.OV)

This file format is version specific, and is treated exactly like an orbital specification file (.ORB) if it
was created by a different version of Orbital Viewer. The start of the file is identical to a .ORB file
except for the header phrase. After an ASCII description of the orbital, a binary record follows. This
binary record stores the current state of the calculations done on the orbital by Orbital Viewer. For
example, it stores the polygons computed in polygon drawing mode. This eliminates the need to
recalculate these values at the expense of file storage space. For more information on this binary
format, please contact the author.

Portable Pixel Map Files (.PPM)

The portable pixel map file format was invented by Jef Pozkanzer. This is a widely used format on
Unix machines, and is pretty much as simple as a format can get. There are six possible modes for a
PPM file, but Orbital Viewer only uses two of them. These are color ASCII and color binary formats.
If the command line version of Orbital Viewer is used to generate a raytraced orbital, the output
will always be in ASCII PPM format.

For an ASCII color PPM file, the file begins with the two letters “P3” this is followed by the width
and height of the image, then the maximum value a pixel can have (typically 255), then the red,
green, and blue values of every pixel. All values are in ASCII decimal notation and are separated by
white space. For example, the beginning of a PPM file might look like “P3 144 128 255 0 4 234 2 8
233 ...”. Pixels are stored from the top left and are always in the order RGB. The file can be slightly
more complicated, but Orbital Viewer adheres to this simplest version.

A binary PPM also begins with two letters, “P6” followed by the width, height, and maximum pixel
value in ASCII. Exactly one character separates the maximum pixel value from a binary record of
the image. This binary record has three bytes per pixel in the order RGB.

More information can typically be found in Unix man pages and by searching for Jef Pozkanzer’s
web site (which seems to move around a bit).

TIFF Files (.TIF)

The Tagged Image File Format is an extremely versatile, flexible format with many, many options.
Orbital Viewer stores TIF images as 24-bit RGB images using run-length encoding. The complete

43

specification can be obtained from the Adobe Corporation, and, at the time of this writing was
located at http://www.adobe.com/supportservice/devrelations/PDFS/TN/TIFF6.pdf . Orbital Viewer
is entirely baseline TIFF compliant.

Bitmap Files (.BMP)

Bitmap files are an inefficient file format which is native to Windows. Most books on Windows
cover the format. Orbital Viewer stores images in type 40 bitmaps with 24-bits per pixel. These files
consist of a 14 byte file header followed by a 40 byte image header. The image header contains
(amongst other things), the image width and height and the color mode. The actual pixels are
stored bottom row first and in BGR (not RGB) format. Each line is padded to a multiple of four
bytes (not an even multiple of pixels). This format is also used somewhat with AVI files.

VRML Files (.WRL)

Virtual Reality Markup Language files are used for storing three-dimensional information. This is
only used for polygon and point drawing modes. Orbital Viewer is entirely compliant with VRML
version 1. In the graphics interface version of the program, three options can be set. These
determine how color is specified within the VRML file since different readers behave differently.
Some VRML readers can not handle more than a few thousand points. The VRML specification can
be obtained at http://www.vrml.org/Specifications . If the command line version of Orbital Viewer
is used to generate a point density or polygon orbital, the output will always be in VRML format.

AVI Files (.AVI)

AVI files are used to store video sequences. The actual file format is a subset of RIFF (Resource
Interchange File Format), which was originally created for the Amiga computer. Although Orbital
Viewer outputs a valid AVI file, it is not the only way such a file could be constructed. The AVI file
format is poorly documented, but information can be found in the book Multimedia and ODBC API
Bible by Richard J. Simon, ISBN 1-57169-011-5.

A brief description of the AVI files created by Orbital Viewer is given below.

Byte Item
0x0000 "RIFF"
0x0004 length of file excluding first 8 bytes
0x0008 "AVI "
0x000C "LIST"
0x0010 length of list record (0xC0)
0x0014 "hdrl"
0x0018 "avih"
0x001C length of avi header (0x38)
0x0020 microseconds per frame
0x0024 bytes per second
0x0028 granularity (0)
0x002C flags (0x810)
0x0030 number of frames
0x0034 0
0x0038 1
0x003C bytes per frame

0x0040 width in pixels
0x0044 height in pixels
0x0048 0
0x0058 "LIST"
0x005C length of list record (0x74)
0x0060 "strl"
0x0064 "strh"
0x0068 length of stream header (0x38)
0x006C "vids"
0x0070 "DIB "
0x0074 0
0x0080 scale (1)
0x0084 frames per second
0x0088 starting frame (0)
0x008C number of frames
0x0090 bytes per frame
0x0094 quality (2000 for some reason)

44

0x0098 0
0x00A0 width in pixels (2 bytes)
0x00A2 height in pixels (2 bytes)
0x00A4 "strf"
0x00A8 length of frame header (0x28)
0x00AC standard bitmap header (0x28 bytes)
0x00D4 "JUNK"
0x00D8 length of padding (0xF18)
0x00DC 0
0x0FF4 "LIST"
0x0FF8 length of list record (4+(8+bytes per

frame)*number of frames)
0x0FFC "movi"

0x1000 "00db"
0x1004 bytes per frame
0x1008 actual frame data. This is the bitmap without

the header
… Previous 3 entries repeated for all frames
0x1000+(8+bytes per frame)*number of frames)
+0x0000 "idx1"
+0x0004 length of index (0x10*number of frames)
+0x0008 "00db"
+0x000C 0x10
+0x0010 (4+(8+bytes per frame)*frame number)
+0x0014 bytes per frame
… Previous 4 entries repeated for all frames

Digistar II Files (.TXT)

The Digistar II is a projector used in planetariums. This output option only works with point and
polygon drawing modes. If any points have been calculated, the points are output. Otherwise, the
vertices of the polygons are output. A set of points are stored in the file, each have a set of
coordinates and a brightness. The brightness is always set to 1.

45

ORBITAL MATHEMATICS

This section is a copy of an older paper on Schrödinger’s Equation. This is the equation used for all
orbital computations. Molecular orbitals are computed using the linear combination of atomic
orbitals (LCAO) technique, where the value of Ψ for each atom is added before the result is squared
to produce Ψ2.

Introduction

Schrödinger’s Equation is converted from the traditional form H EΨ Ψ= in spherical coordinates
to a general form which does not contain any derivatives, only summations. It is assumed that
some knowledge of Schrödinger’s Equation already exists. All symbols used are identified. The
result is presented in a spherically-separable format, and the spherical gradient for the function is
shown. These results are valid for all hydrogenic atoms, regardless of quantum number, nuclear
mass, or atomic number.

 List of Symbols

H quantum mechanical Hamiltonian

Ψ wave function

E internal energy

h Planck's constant = m a he 0
2 342 10545726 10τ π= = × − −. kg m s2 1

a0 radius of first Bohr orbit = h
2 2 11529177249 10m ee = × −. m

a radius of first orbit = h
2 2µe

µ reduced mass of the electron = ()m M m Me e +

me mass of electron = 9109389427 10 31. × − kg

mZ mass of proton = 16726230 10 27. × − kg

mN mass of neutron = 16749286 10 27. × − kg

M mass of the nucleus

τ time for electron to travel 1 radian in first Bohr orbit = 2 41888440 10 17. × − s

e negative of charge on electron = m ae
1 2

0
3 2 14 1 2 3 2 11518907291 10τ = × − −. kg m s

$e natural logarithm base = 2.71828182846

i unit imaginary number

∇ del operator

46

V potential energy

n principal quantum number (1, 2, 3, …)

l orbital quantum number (0, 1, …, n − 2 , n −1)

m angular momentum quantum number, usually ml , (−l , − +l 1, …, l −1 , l)

s spin quantum number, usually ms , (±1/2)

r radial distance

θ rotation from z axis (0 to π)

φ rotation around z axis (0 to 2π)

Z atomic number

Ψ nlm electron probability function

Rnl radial probability function

Ylm angular probability function

Θ lm probability function from z axis

Φ m probability function around z axis

ρ radial factor

n
mL associated Laguerre polynomial

nL Laguerre polynomial

l
mP associated Legendre polynomial

Electron Orbital Wave Function

The solution of Schrödinger's equation

H EΨ Ψ= , (1)

where ()H V r= − ∇ +
h2

2

2µ
, for the hydrogenic atom, in which ()V r

Z e
r

= −
2

 is the potential

energy due to charge, is

() () ()Ψ nlm
nl

lmr
R r
r

Y, , ,θ φ θ φ= . (2)

The radial part of this function is

47

() ()
() ()R r

r r
Z n l
n a n l

enl l
n l
lL=

− −
+

− +
+

+1 1
2 3

2 1 2 1!
!

$
ρ

ρ ρ , (3)

where ρ =
2Zr
na

, a e
=
h2

2µ , and ()n l
lL +

+2 1 ρ is the associated Laguerre polynomial. µ is the reduced

mass of the system, which is ()µ = +m M m Me e , where me is the mass of an electron and M is

the nuclear mass. The associated Laguerre polynomial is

() () ()n
m m

nL Lx xd
dx= , (4)

where the Laguerre polynomial is

() () ()n
n n n n n nL x x n x n n x n n n x n= − − +

−
−

− −
+ + −











− − −1
1

1
2

1 2
3

1
2

1
2 2

2
2 2 2

3

!
()

!
() ()

!
 !L .(5)

The associated Laguerre polynomial can be rewritten

() () ()n
m m n j n j n j m n j

j

n

j

n

L x n
n j j

x n
n j j

xd
dx

d
dx= −

−






 = −

−






− − − −

==
∑∑ () !

()! !
() !

()! !
1 1

2

2

2

2
00

(6)

However, ()ddx
m n n mx n

n m
x=

−
−!

()!
 when m n≤ , and ()ddx

m nx = 0 when m n> , assuming n and

m are both non-negative integers.. Thus

()n
m

n j n m j

j

n m n j n m j

j

n m

L x n x
n j j n m j

n x
n j j n m j

=
−
− − −







 =

−
− − −









− − −

=

− − − −

=

−

∑ ∑() !
()! !()!

! ()
()! !()!

1 12

0

2

0
. (7)

Substituting equation (7) into equation (3) yields

() ()
()

R r
r

e n l
rn

Z n l
a n l n l j j n l j

nl
l n l j n l j

j

n l

=
+ − −

+
−

+ − − − −










− + + − − − −

=

− −

∑
$ ()! !

!
()

()! !()!

ρ

ρ ρ2 1 1

0

11 1
1 . (8)

Note that () ()()− = − −+ − − − −1 1 1 1n l j n l j
. If the value for ρ is substituted into equation (8), the total

radial probability is seen to be

() ()R r
r

e Z r
n a

Z n l n l
a

Zr
na

n l j j n l j
nl

Zr
na l l l

l l

n l j

j

n l

= −
− − +

−





+ − − − −



















− + +

+ +

− − −

=

− −

∑
$!()!

()! !()!
2 1

2

1

1 1

2 1

1

0

1

. (9)

The angular probability function can be rewritten () () ()Ylm lm mθ φ θ φ, = Θ Φ . The probability

function from the z axis is

48

() ()Θ lm

m m

l
ml l m

l m Pθ θ= −
+ −

+

+

()
()()!

()!
cos1

2 1
2

2 (10)

where ()l
mP cosθ is the associated Legendre polynomial. ()−

+

1 2
m m

 is an arbitrary phase, as

suggested by Condon and Shortley and used throughout much of the literature. The associated

Legendre polynomial is

() () () ()[] () ()l
m

m

l

l m l

m

l

l m j
l j

j

l

P x
x
l

x
x
l

l
j l j

xd
dx

d
dx=

−
− =

− −
−









+ + −

=
∑

1

2
1

1

2
1

2 2
2

2 2
2

0! !
!()
!()!

()
. (11)

As was done with the associated Laguerre polynomial, the Legendre polynomial is also equal to

() ()
l
m

m

l

j
l m j

j

l m

P x
x l j

j l j l m j
x=

− − −
− − −









− −

=

−

∑
1

2
1 2 2

2

2 2
2

0

2 () ()!
!()!()! (12)

where if l m− is an odd number, the upper bound of the summation is ()l m− −1 2 . This results

in a total probability function from the z axis of

()Θ lm

m m m

l

j
l m j

j

l m

l l m
l m

l j
j l j l m j

θ θ θ= −
+ −

+
− −
− − −











+
− −

=

−

∑()
()()!

()!
sin () ()!

!()!()!
cos1

2 1
2 2

1 2 2
2

2 2

0

2

. (13)

The probability function around the z axis is

()Φ m
imeφ

π
φ=

1
2

$ (14)

where $e is the natural logarithm base and i is the unit imaginary number. A real valued function

can be constructed such that

() ()
Φ m

m
φ

φ
π

=
sin

m > 0

()Φ 0
1
2

φ
π

= for m = 0 (15)

() ()
Φ m

m
φ

φ
π

=
cos

m < 0

Note that the spin quantum number, s , does not affect the physical shape of the probability

function. Relativistic effects are not included in the preceding equations. These effects are

comparatively small. For non-hydrogenic atoms, additional terms must be introduced because of

49

the interaction between electrons. Only approximations of the many-electron atom can be

obtained. Once such approximation is the standard perturbation method, which can be found in

much of the literature.

The total wave function for a hydrogenic atom is given below. The terms which are

constant with respect to coordinates are grouped together.

()

()

()

Ψ nlm

m m l

l l

l
Zr
na

n l j

j

n l

m
j

l m j

j

l m

r Z
n a

Z n l n l l m l
a l m

r e
Zr na

n l j j n l j

l j
j l j l m j

m m

, , ()
()!()!()!()

()!

$
()! !()!

sin () ()!
!()!()!

cos

sin (

θ φ
π

θ θ

φ

= −
− − + − +

+

•
−

+ − − − −













•
− −
− − −











•
>

+ + +

+ +

−
− − −

=

− −

− −

=

−

∑

∑

1
1 2 1

2
1

1 2 2
2

2 0

2
2

1

2 1

1

0

1

2

0

2

()

)
()

cos ()
1 0

2 0
m

m m
=
<







 φ

(16)

Orbital Function Gradient

The gradient function in spherical coordinates is

∇ = + +Ψ ∂Ψ
∂

∂Ψ
∂θ θ

∂Ψ
∂φθ φr

e
r

e
r

er
1 1

sin
(17)

where er , eθ , and eφ are the unit vectors in the spherical coordinate system. This can be rewritten

as

∇ = ∇ +∇ +∇Ψ Ψ Ψ Ψe r e er
e e e

θ φθ φ (18)

The factor in the er direction is

50

()

()

∇ = −
− − + − +

+

•

−





−
+ − − − −













−
−

+ − − − −













+ + +

+ +

−
− − −

=

− −

−
− − −

=

−

∑

e

m m l

l l

l
Zr
na

n l j

j

n l

l
Zr
na

n l j

j

n l

r

Z
n a

Z n l n l l m l
a l m

l
r

Z
na

r e
Zr na

n l j j n l j

Z
na
r e

Zr na
n l j j n l j

Ψ ()
()!()!()!()

()!

$
()! !()!

$
()! !()!

1
1 2 1

2
1

2 2
2

2
2

1

2 1

1

0

1

2

0

π

()

()

−

− −

=

−

∑

∑





















•
− −
− − −











•
>
=
<









2

2

0

2 1 2 2
2

2 0
1 0

2 0

sin () ()!
!()!()!

cos

sin ()
()

cos ()

m
j

l m j

j

l m

l j
j l j l m j

m m
m

m m

θ θ

φ

φ

(19)

where a summation with an upper bound less than zero is evaluated as zero. The factor in the eθ
direction is

()

∇ = −
− − + − +

+

•
−

+ − − − −













•

− −
− − −











−

+ + +

+ +

−
− − −

=

− −

− − −

=

−

+

∑

∑

e

m m l

l l

l
Zr
na

n l j

j

n l

m
j

l m j

j

l m

m

Z
n a

Z n l n l l m l
a l m

r e
Zr na

n l j j n l j

r

m l j
j l j l m j

θ π

θ θ θ

Ψ ()
()!()!()!()

()!

$
()! !()!

cos sin () ()!
!()!()!

cos

sin

1
1 2 1

2
1

1
1 2 2

2

2
2

1

2 1

1

0

1

1 2

0

2

1

()

()

θ θ

φ

φ

() ()!()
!()!()!

cos

sin ()
()

cos ()

− − − −
− − −

































•
>
=
<









− − −

=

− −

∑
1 2 2 2

2

2 0
1 0

2 0

1 2

0

1
2 j

l m j

j

l m

l j l m j
j l j l m j

m m
m

m m

(20)

The last component, eφ , is

51

()

()

∇ = −
− − + − +

+

•
−

+ − − − −













•
− −
− − −











•

+ + +

+ +

−
− − −

=

− −

− −

=

−

∑

∑

e

m m l

l l

l
Zr
na

n l j

j

n l

m
j

l m j

j

l m

Z
n a

Z n l n l l m l
a l m

r e
Zr na

n l j j n l j

l j
j l j l m j

r

m m m

φ π

θ θ

θ

φ

Ψ ()
()!()!()!()

()!

$
()! !()!

sin () ()!
!()!()!

cos

sin

cos (

1
1 2 1

2
1

1 2 2
2

1
2

2
2

1

2 1

1

0

1

2

0

2

()

>
=

− <









0
0 0

2 0

)
()

sin ()
m

m m mφ

(21)

52

IMAGING MATHEMATICS

In addition to Schrödinger’s equation, a variety of other equations are used in the calculation of an
orbital.

Camera Equations

The viewpoint is treated as a camera with 10 parameters. These parameters are the location of the
camera (0X , 0Y , and 0Z), the orientation of the camera (θ , φ , and ψ), the focal length of the
camera as compared to the pixel size in horizontal and vertical directions (xC and yC), and the
center of the camera within the image (0x and 0y).

The location of the camera is specified in the rotated coordinate system. The coordinate system is
rotated using the equation

















′′+′′′−′′
′−′′′′

′′−′′′+′′

















′
′
′

=
















ψφθψθψφθψθψφ
φθφθφ
ψφθψθψφθψθψφ

coscossinsincoscossincossinsincossin
sincoscossincos

sincossincoscossinsincoscossinsinsin

0

0

0

0

0

0
t

Z
Y
X

Z
Y
X

(1)

where the primed coordinates, 0X ′ , 0Y ′ , and 0Z ′ , are the coordinates specified in the Orbital Viewer
program. Similarly, the orientations θ ′ , φ′ , and ψ are as specified in the program, with πθθ +=′
and πφφ +=′ . The angles are taken differently than in the camera equations given in
equation (3), below, for convenience in the program.

Theoretically, there is a focal length, f , and a physical pixel size (xλ by yλ). However, the pixel
size is always coupled with the focal length, and therefore xx fC λ= and yy fC λ= . The
camera always has square pixels (yx CC =) and is always centered on the image (2/0 wx = ,

2/0 hy = , where w and h are the width and height of the image).

If the location of three-dimensional point is known, then the location of the corresponding pixel
within the camera image is also known. Let X , Y , and Z be the location of the three-dimensional
point, and let x and y be the location of the pixel within the image. The relationship is given by
the equations

() () ()()
() () ()

() () ()()
() () () 330320310

230220210
0

330320310

130120110
0

mZZmYYmXX
mZZmYYmXXC

yy

mZZmYYmXX
mZZmYYmXXCxx

y

x

−+−+−

−+−+−−
=−

−+−+−
−+−+−−

=−

(2)

where the rotation coefficients, 11m through 33m , are given by

















+−
−

−+
=

















ψφθψθψφθψθψφ
φθφθφ
ψφθψθψφθψθψφ

coscossinsincoscossincossinsincossin
sincoscossincos

sincossincoscossinsincoscossinsinsin

333231

232221

131211

mmm
mmm
mmm

(3)

53

This is not a computationally efficient form of the equations. Instead of using equation (2), the
camera parameters can be converted into 11 linear parameters. This is called the Direct Linear
Transform (DLT) technique. To convert the physical camera parameters, let

033032031 ZmYmXmP −−−= (5)

then the DLT parameters are

() () ()

() () ()

3311

3210

319

0330230320220310218

233307

223206

213105

0330130320120310114

133303

123202

113101

mPL
mPL
mPL

ZmymCYmymCXmymCPL
mCmyPL
mCmyPL
mCmyPL

ZmxmCYmxmCXmxmCPL
mCmxPL
mCmxPL
mCmxPL

yyy

y

y

y

xxx

x

x

x

=
=
=

−+−+−=

−=

−=

−=
−+−+−=

−=
−=
−=

(6)

Now, equation (2) can be rewritten as

1

1

11109

8765

11109

4321

+++
+++

=

+++
+++

=

ZLYLXL
LZLYLXLy

ZLYLXL
LZLYLXLx

(7)

Raytracing

Each pixel in an image is calculated by tracing a ray from the camera’s location (0X , 0Y , and 0Z)

through the “film plane” of the image. The direction of the ray for a pixel located at x , y , is

determined by the vector

() ()() () ()() () ()
() ()

() ()() () ()() () ()
() ()

























−+−+−
+++−+−+−+−+

−+−+−
+−+++−+++−+−

1

11

11

52611019296510

435871111439115879

52611019296510

43687211243101168710

LLLLLLLLyLLLLx
LLLLLLLLLLLyLLLLLx

LLLLLLLLyLLLLx
LLLLLLLLLLLyLLLLLx

(8)

The first two components are equations (7) solved for X and Y with 1=Z .

54

Only the region of space which is close to the orbital needs to be
considered. As such, the ray is immediately traced to a bounding
sphere which surrounds the orbital. The radius of the sphere is
computed such that it contains all of the orbital’s surface. If
asymptotes are drawn, or a probability density plot is produced,
the maximum value of Ψ2 in the orbital is computed. The sphere
which encloses the surface with 1/1000th of this probability is
used.

The intersection of a ray with a sphere is given by the equation

()θθ 222 sincos drd
v
vx −−+ v

v
(9)

where x is the ray starting location, vv is the ray’s direction, θ is
the angle formed by the line connecting x to the center of the
sphere and vv , and r is the radius of the sphere. See Figure 38. If
the value under the radical is negative, the ray misses the sphere.

For orbitals which are drawn as completely opaque surfaces of constant probability, a modified
Runge-Kutta technique is used to roughly locate the surface. this technique is modified by having a
minimum and maximum positional change based on the distance from the viewpoint and the size
of the orbital. After the surface has been roughly located, it is precisely located using a Newton-
Rhapson process.

For orbitals which contain asymptotes, probability density plots, or partially translucent surfaces,
the ray is traversed in a series of steps, with the probability calculated at each step. If the specified
index of refraction is not unity, then they direction of the ray is modified according to the
following equation

2211 sinsin θθ nn = (10)

where 1n is the index of refraction on one side of the surface, 2n is the index of refraction on the
other side, and 1θ and 2θ are the angles between the surface normal, as calculated from the orbital
function gradient, and the ray. In the event that this results in an impossible output angle, the
reflection is used instead. This is the only place in the orbital calculations where reflection is used.

Figure 38: Intersection of a ray
with a sphere

55

GRAND TABLE

Due to file size considerations, the Grand Table is not present in this document. It can be found on
the web at http://www.orbitals.com/orb/orbtable.htm. It may also be available as a separate PDF
file by the name of GRANDTBL.PDF.

56

PROGRAM HISTORY

The Orbital Viewer program dates back many years. The following is a rough history:

1986-87: A primitive point probability program was written for the Apple II series of computers.
This included a fixed animation (no user control) spinning in real-time on the Apple II plus
(admittedly, it was only about 80 pixels square with a few hundred points). This version only could
deal with orbitals of n ≤ 4. This was used as a demonstration for a high-school chemistry course I
was taking at the time. Programming was done in basic and assembly language.

1988-89: A version which allowed any orbital with m = 0 was written. This produced a point
surface plot (like the polygon mode with points showing). A series of fixed animations were created
for the Apple IIe computer (this time at the full resolution of 280x192). Programming was
exclusively in assembly language.

1990-92: A preliminary polygon version was written for the Apple IIgs using a 3D graphics library
the author also created. This was much, much too slow. At the same time, a computationally
inefficient raytracing version was being run on an IBM mainframe. Programming was in assembly
language, Pascal, and C.

1993-96: A very cryptic, but powerful, command line version of the raytracing method was
programmed for Intel machines. This was used extensively to produce MPEG animations.
Programming was in C with the actual computational aspects in very finely-tuned assembly
language. An ANSI-C compatible version was also programmed.

1997-98: Finally a user interface for viewing orbitals. This program is written in C with some
assembly language. An ANSI-C command line version exists, and will be proliferated to many
platforms.

57

AUTHOR’S NOTE

It has been my pleasure to program Orbital Viewer. I hope that you enjoy using it, and I greatly
value any feedback.

Contact Information

Please direct all comments, suggestions, and complaints to:

David Manthey
P. O. Box 27
Troy, New York 12181-0027
manthey@orbitals.com

Acknowledgements

Although all of the computer code and documentation have been written by myself, I have several
people to thank:

William Manthey, my father, for getting me into this. I first wrote a simple program to generate
point density plots for a high school chemistry course, partly his suggestion. Since then, orbitals
have become a major hobby, as this document and the program itself testifies.

Catherine Manthey, my mother, for the Orbital Quilt. See Figure 39 and Figure 40.

Benjamin Manthey, my older brother, for his substantial help in beta testing the program. Without
his assistance, the Orbital Viewer program would be but a fragment of its present self.

Figure 39: The Orbital Quilt, made by Catherine Manthey

Figure 40: Underside detail on the Orbital
Quilt

58

REFERENCES

Abdel-Aziz, Y. I. and H. M. Karara, "Direct Linear Transformation from Comparator Coordinates into

Object Space Coordinates in Close Range Photogrammetry," Proceedings of ASP/UI

Symposium on Close-Range Photogrammetry, January 1971.

Ballhausen, Carl J., Introduction to Ligand Field Theory, New York: McGraw-Hill Book Company, Inc.,

1962.

Carneiro, Bernardo Piquet, Claudio T. Silva, and Arie E. Kaufman, “Tetra-Cubes: An algorithm to

generate 3D isosurfaces based upon tetrahedra”, SIGGRAPH ’96 Proceedings, Vol. 30 (1996), pp.

205-210.

Condon, E. U., and G. H. Shortley, The Theory of Atomic Spectra, Cambridge: University Press, 1959.

King, Gerald W., Spectroscopy and Molecular Structure, New York: Holt, Rinehart and Winston, Inc.,

1965.

Lorensen, William E. and Harvey E. Cline, “Marching Cubes: A High Resolution 3D Surface

Construction Algorithm”, Computer Graphics (SIGGRAPH ’87 Proceedings), Vol. 21 (July 1987),

pp. 163–169.

Margolis, Emil J., Bonding and Structure, New York: Meredith Corporation, 1968.

Offenhartz, Peter O'D., Atomic and Molecular Orbital Theory, New York: McGraw-Hill Book

Company, Inc., 1970.

Shih, Tian-Yuan, “The Reversibility of Six Geometric Color Spaces”, Photogrammetric Engineering

and Remote Sensing, Vol. 61, No. 10 (October 1995), pp. 1223-1232.

Toutin, Theirry and Benoit Rivard, “A New Tool for Depth Perception of Multi-Source Data”,

Photogrammetric Engineering and Remote Sensing, Vol. 61, No. 10 (October 1995), pp. 1209-1211.

