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Introduction

The method of least squares is used to solve a set of linear equations having more equations than
unknown variables.  Since there are more equations than variables, the solution will not be
exactly correct for each equation; rather, the process minimizes the sum of the squares of the
residual errors.  The method is very powerful and can be applied to numerous applications.

In the general case, the least-squares method is often used to solve a set of non-linear equations
that have been linearized using a first-order Taylor-series expansion.  Solving non-linear
equations is an iterative process using Newton’s method.  The speed of convergence is
dependent on the quality of an initial guess for the solution.  The non-linear least-squares method
is often referred to as a bundle adjustment since all of the values of an initial guess of the
solution are modified together (adjusted in a bundle).  This technique is also occasionally
referred to as the Gauss-Newton method.

The least-squares method is not new; Legendre invented the method in 1805, and reference
books have mentioned least squares in their titles as early as the 1870s.  However, in most books
about least squares, the general method is bound inextricably with the book’s primary subject
matter.  There is little uniformity between different books, or even within a single book, on the
designation of different variables.  This makes it difficult to understand the method.  This paper
provides a new description of least squares which hopefully describes the process in a simple and
straight-forward manner.  A complete derivation of the method is not provided, only a functional
description.  Familiarity with matrices and partial derivatives is assumed.



2

An example problem is provided, computing the location of a circle based on a set of points.
The example shows a linear solution and an iterative nonlinear solution to this problem as well as
some error analysis.

List of Symbols

ia coefficients of a linear equation
ε relative size of adjustment compared to initial value
( )K,,,F 321 xxxi equation based on a set of unknowns.  This is not necessarily a function.  The

equation must be solved for the value (i.e., ( ) ii kxxx =K,,,F 321 ) whose error
will be minimized

( )21,,Fisher vvα the Fisher distribution
J the Jacobian matrix.  This is the partial differentials of each equation with respect

to each unknown.  Sometimes written ( ),...,,F 321 xxxi∇=J , where ∇  is del,
the gradient operator

K vector of residuals.  Each component is the difference between the observation,
ik , and the equation evaluated for the initial guess, 0ix

ik an observation.  The least-squares process minimizes the error with respect to the
observations

N the normal matrix.  WJJN t=
Q cofactor matrix.  The inverse of W .  This is typically the standard deviations of

the measurements
xxQ the covariance matrix.  Also called the variance-covariance matrix.  1−= NQxx

xxQ′ a sub-matrix of the covariance matrix.  Used to calculate an error ellipse

ijxxq a value within the covariance matrix
r the degrees of freedom.  This is the number of equations minus the number of

unknowns
2

0S the reference variance.  This is used to scale the covariance matrix

axisS length of the semi-axis of an error ellipse based on the covariance matrix

%axisS length of the semi-axis of an error ellipse with a specific confidence level
W weighting matrix.  This is a square symmetric matrix.  For independent

measurements, this is a diagonal matrix.  Larger values indicate greater
significance

iw the diagonal components of the weighting matrix
X vector of initial guesses for the unknowns
X′ vector of refined guesses for the unknowns.  XXX ∆+='

ix an unknown value.  This is solved for in the least-squares process
'ix the refined guess for an unknown value.  iii xxx ∆+= 0'

0ix the initial guess for an unknown
X∆ vector of adjustment values.  The initial guesses are adjusted by this amount
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ix∆ an adjustment value.  This is added to the initial guess to improve the solution
( )vΓ the Gamma distribution

General Technique

The general least squares process can be used to solve a set of equations for a set of unknowns.
The only requirement is that there are at least as many equations as there are unknowns.

If the equations are linear, the least-squares process will produce a direct solution for the
unknowns.  If the equations are not linear, an initial guess of the unknowns is required, and the
result is an adjustment to the initial parameters.  This is repeated until the results converge (the
adjustments become very close to zero).  The linear case is an adjustment using zero as the initial
guess of all parameters.

The process requires a set of equations with the unknowns on one side and some known quantity
on the other.  Let ix  be the set of unknowns, and let the equations be of the form

( ) ii kxxx =K,,,F 321

where ik  is the observation (value) whose least-squares error will be minimized.  Since there are
more equations than unknowns, the solution of the unknowns will not be exact.  Using the
solution to compute the equation, ( )K,,,F 321 xxxi , will not generate the exact observation value,

ik .  The square of the difference between the evaluated equation and the observation is
minimized.

There is typically one equation for each observation.  In photogrammetry, this might be one
equation for each x pixel coordinate and one equation for each y pixel coordinate.  Each equation
is not required to have all of the unknowns in it.

The Jacobian matrix, J , is the matrix of the partial differentials of each equation with respect to
each unknown.  That is,
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In general, the height of the Jacobian matrix will be larger than the width, since there are more
equations than unknowns.
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Furthermore, let the vector K  be the vector of the residuals.  A residual is the difference
between the observation and the equation calculated using the initial values.  That is

( )
( )
( )
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One further parameter is a weighting matrix, W .  This is a matrix which includes the expected
confidence of each equation and also includes any dependence of the equations.  A larger value
in the weighting matrix increases the importance of the corresponding equation (larger values
indicate greater confidence).  It is a square symmetric matrix with one row per equation.  The
main diagonal contains the weights of the individual equations, while the off-diagonal entries are
the dependencies of equations upon one another.  If all of the observations are independent, this
will be a diagonal matrix.  The cofactor matrix, Q , is the inverse of the weighting matrix (i.e.,

1−= WQ ).

Let 0ix  be an initial guess for the unknowns.  The initial guesses can have any finite real value,
but the system will converge faster if the guesses are close to the solution.  Also, let X  be the
vector of these initial guesses.  That is
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It is desirable to solve for the adjustment values, X∆ .  This is the vector of adjustments for the
unknowns
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where, based on the initial guess, X , and an adjustment, X∆ , a set of new values are computed
XXX ∆+=′

To solve for X∆ , (see the references for the reasoning behind this solution)
( ) WKJWJJX tt 1−

=∆

In various texts, the normal matrix, N , is defined as
WJJN t= ,

and the covariance matrix (sometimes referred to as the variance-covariance matrix), xxQ , is
defined as

( ) 11 −−
== NWJJQ t

xx
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If the weighting matrix is diagonal, then X∆  can be solved by row reduction of the matrix

( )( )

( )( )
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where K,,, 321 www  are the diagonal elements of the weighting matrix.  Note that the left side of
the matrix is the normal matrix, N .

The initial guesses, 0ix , are updated using the solution of the adjustment matrix, X∆ , as follows
XXX ∆+=′

or
iii xxx ∆+= 0'

The process is repeated using the new values, 'ix , as the initial guesses until the adjustments are
close to zero.

Practically, an adjustment is close to zero when it is small compared to the absolute magnitude of
the value it is adjusting, i.e., ε⋅<∆ 0ii xx , where ε  is a small value.  The actual value for ε  can
be selected based on the number of decimal digits of precision used in the calculations.
Typically, the order of magnitude of ε  will be a few less than the number of digits of precision.
For example, if the calculations are done on a computer using standard double precision (8-byte)
values, the computer can hold around 15 digits of precision; therefore 1210−≈ε .

Potential Problems

There are conditions where the solution will not converge or will converge to undesirable values.
This process finds a local minimum.  As such, there may be a better solution than the one found.
A solution is dependent on the equations, ( )K,,,F 321 xxxi , being continuous in K,,, 321 xxx .  The
first and second derivatives do not need to be continuous, but if the equations are not continuous,
there is no guaranty that the process will converge.   Also, in certain circumstances, even if the
equations are continuous, the solution may not converge.  This can happen when the first and
second derivatives of the equations have significantly different values at the initial values than at
the solution.

In any case where the solution does not converge, a solution may still be able to be obtained if
different starting values, 0ix , are used.
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Linear Technique

For sets of linear equations, the least-squares process will produce a direct solution for the
unknowns.  The linear case is mathematically the same as the general case where an adjustment
is performed using zero as the initial guess of all parameters.  Only a single iteration is required
for convergence.

The equations must be of the form
( ) ii kxaxaxaxxx =+++= KK 332211321 ,,,F

The Jacobian matrix, J , is therefore
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where ija  is the thi  coefficient of the thj  equation.

Since the initial guesses are all zero, the vector of residuals, K , is
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If the weighting matrix is diagonal, then X∆  can be solved by row reduction of the matrix
( ) ( ) ( )
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The final solution will be the adjustment values.  That is
XX ∆=

or
ii xx ∆=
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Error Residuals, Ellipsoids, and Confidence

The covariance matrix, xxQ , contains the variance of each unknown and the covariance of each
pair of unknowns.  The quantities in xxQ  need to be scaled by a reference variance.  This

reference variance, 2
0S , is related to the weighting matrix and the residuals by the equation

r
S

tWKK
=2

0

where r  is the number of degrees of freedom (i.e., the number of equations minus the number of
unknowns).

For any set of quantities, an error ellipse can be calculated.  The dimensions and orientations of
the ellipse are calculated from the coefficients of the covariance matrix.  Only the coefficients of
the covariance matrix in the relevant rows and columns are used.  This is the appropriate n x n
sub-matrix, where n is the number of dimensions for the error ellipse.  The sub-matrix is
symmetric.

The ellipse matrix is composed of entries from the covariance matrix.  For example, a three-
dimensional error ellipsoid is computed from
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where 
ijxxq  are values from the covariance matrix xxQ , and a , b , and c  are the indices for the

unknowns for which the ellipse is computed.

The error ellipse semi-axes are given by
( )xxaxisaxis eigenvalueSS Q′±= 2

0

The orientation of the error ellipse is the column eigenvectors of xxQ′ .

To determine the error to a specific confidence level, the length of the semi-axis is multiplied by
a confidence factor based on the Fisher distribution using the formula

( )runknownsofconfidenceSS axisaxis ,#,1Fisher2% −=
where the confidence  is a number from 0 to 1, with 1 being complete confidence, and r  is the
number of degrees of freedom.  The Fisher distribution is determined from the equation

( )( )
( ) ( )( )

( )

( )[ ] ( ) dx
xvv

x
v
v

vv
vv

vv

vv

vv
2

21

222

2

1

,,Fisher 21

21
21

1
1

21
122

2
+

−∞

+







ΓΓ
+Γ

= ∫
α

α
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An Example Problem

Given a set of two-dimensional points, find the circle best
represented by these points.

For this example, there are 82 points, see also the figure to the right:

3,-8
4,-9
5,-9
6,-9
7,-9
8,-9
9,-9
10,-9
11,-8
12,-8

13,-8
14,-8
15,-7
16,-6
16,-5
17,-4
17,-3
17,-2
18,-1
18,0

18,1
18,2
18,3
18,4
18,5
18,6
18,7
18,8
18,9
17,10

17,11
16,12
16,13
15,14
15,15
14,16
13,17
12,18
11,18
10,19

9,20
8,20
7,20
6,21
5,21
4,21
3,22
2,22
1,22
0,22

-1,21
-2,21
-3,20
-4,19
-5,18
-6,17
-7,16
-7,15
-8,14
-8,13

-8,12
-8,11
-8,10
-8,9
-8,8
-8,7
-8,6
-8,5
-8,4
-7,3

-7,2
-6,1
-5,0
-4,-1
-4,-2
-3,-3
-2,-4
-2,-5
-1,-6
0,-7

1,-7
2,-8

Let the points be denoted ( )ii yx , .  That is, ( ) ( )8,3, 11 −=yx , ( ) ( )9,4, 22 −=yx , ( ) ( )9,5, 33 −=yx , ...

A circle can be defined by the equation
( ) ( ) ryyxx =−+− 2

0
2

0

where ( )00 , yx  is the center of the circle and r  is the radius of the circle.

Ideally, it is desirable to minimize the square of the distance between the points defining the
circle and the circle.  That is, minimize

( ) ( )∑ 












 −−+−

i
ii ryyxx

2
2

0
2

0

This is equivalent to performing the least-squares process using the equations
( ) ( ) ( ) 0,,F 2

0
2

000 =−−+−= ryyxxryx iii

A Linear Solution

The equation of a circle is not linear in the unknown values 0x , 0y , and r .  The equation of a
circle can be written in the linear form

1)( 22 =+++ CyBxyxA
where

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2

2

2

1

yxr
yC

yxr
xB

yxr
A

−−
−

=

−−
−

=

−−
=

A set of points used to
approximate a circle
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This can be rewritten for the original unknowns as

A
CBAr

A
Cy

A
Bx

2
4

2

2

22

0

0

++
=

−
=

−
=

Note that by using the linear form of the circle equation, the square of the distance from each
point to the circle in not the value that is being minimized.

Using the equation 1)( 22 =+++ CyBxyxA  with the unknowns A , B , and C , the Jacobian
matrix is
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Placing numerical values in the Jacobian matrix gives
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Since all initial guesses are zero, the residual vector is
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Lacking other information, the weighting matrix, W , is the identity matrix.  That is
IW =

The unknowns, A , B , and C , can be solved for using the equation
( ) ( ) KJJJWKJWJJX tttt 11 −−

==
This can be simplified to
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Numerically, this is
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2347651778527954653 1
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Solving for the unknowns, this is
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207436511780-
506048422080-

0300632844280

.

.
.

C
B
A

Solving for the circle parameters, this is

814.6756403
55.87546732
24.77876017

0

0

=
=
=

r
y
x

This solution is shown superimposed on the original points in the
figure to the right.  Note that the circle does not fit the data points
very well because the solution used the linear form of the circle
equations.  A much better fit can be obtained using the nonlinear
equations.

A Nonlinear Solution

Instead of solving for the linear parameters, A , B , and C , it is more desirable to solve for the
values 0x , 0y , and r  using an equation that minimizes the distance from the points to the circle.
The following equation is used

( ) ( ) 02
0

2
0 =−−+− ryyxx ii

The Jacobian matrix is
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A circle calculated by a
linear least-squares fit
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where

1F
22

F
22

F

2
0

2
00

2
0

2
0

0

2
0

2
00

2
0

2
0
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=

∂

r

yxyyyxxx
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y

yxyyyxxx
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i
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The solution of 0x , 0y , and r  will require multiple iterations.  A starting guess for these values
is required.  The starting guess can be arbitrary provided the equations are valid.  A starting
guess of

51
0
0

0

0

=
=
=

r
y
x

will be used.

Placing numerical values in the Jacobian matrix gives
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1-610.87415727110.48564293-
1-860.91381154600.40613846-
1-750.93632917150.35112344-

J

The residual vector is

( ) ( )

( ) ( )
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46.45599625
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Again, lacking other information, the weighting matrix, W , is the identity matrix.

The adjustments of the unknowns, 0x∆ , 0y∆ , and r∆ , can be solved for using the equation

( ) ( ) KJJJWKJWJJX tttt 11 −−
==∆

Numerically, this is
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∆ −

337.5400215
8216.041530
5176.573030

82018.7305646217.4284646
018.7305646842.531392023.66084235-
217.428464623.66084235-139.4686079 1

0

0
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y
x
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Solving for the adjustment values, this is
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∆
∆
∆

82.36489108-
16.64910512
96.13476860

0

0

r
y
x

The circle parameters are then adjusted to

112.635108988-2.364891051
16.6491051216.649105120

96.1347686096.134768600

000

000

=+=∆+=′
=+=∆+=′
=+=∆+=′

rrr
yyy

xxx

This new solution is now used to compute a new Jacobian matrix and a new residual vector,
which are then used to again solve for X∆ .  The next iteration is
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∆ −

71.58461399
550.44641610-

 61.03376193-

1132.792842
219.4100044-
742.6061622-

8252.28067804-81.77638861-
52.28067804-042.231375172.95692443-
81.77638861-72.95692443-939.7686248 1

0

0

r
y
x

The circle parameters are now adjusted to

014.219722971.58461399112.6351089
56.20268901055-0.446416116.64910512

25.1010066736-1.033761996.13476860

000

000

=+=∆+=′
=+=∆+=′
=+=∆+=′

rrr
yyy

xxx

Additional iterations are performed until the adjustment values
become close to zero.  When performing computations with ten
significant figures, after nine iterations, the values have converged to

214.2420318
76.23313779
65.15570183

0

0

=
=
=

r
y
x

This solution is shown superimposed on the original points in the
figure to the right.  Note that the circle fits the data points
significantly better than the linear solution.

An Error Ellipse

To determine the expected error of the nonlinear solution of the circle, the error ellipse can be
calculated.  To illustrate this, the error ellipse of the circle’s center will be computed.

A circle calculated by a
nonlinear least-squares fit
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The error ellipse is computed using the covariance matrix

( )















==

−

3920.01220234375220.0002653697230.00030775 -
375220.000265366400.0238568458250.00176531

97230.00030775 -58250.001765316110.02523150
1WJJQ t

xx

Since only the error ellipse for the center of the circle, ( )00 , yx , is desired, the matrix of interest is









=′

6400.0238568458250.00176531
58250.001765316110.02523150

xxQ

The matrix xxQ′  is composed of the entries in the first two columns and rows of the matrix xxQ
since 0x  corresponds to the first column and 0y  to the second column of the Jacobian matrix.

The eigenvalues of xxQ′  are

( ) 







=′

60226497733.0
40264385791.0

seigenvalue xxQ

The eigenvectors specify the orientation of the ellipse.  The eigenvectors are

( ) 















=′

670.82547603
460.56443716-

,
460.56443716
670.82547603

rseigenvecto xxQ

The reference variance is computed based on the residual matrix and on the degrees of freedom.
The number of degrees of freedom is the number of observations (82 observations – the number
of points used to compute the circle) minus the number of unknowns (3 unknowns – 0x , 0y , and
r ).  The reference variance is

846653521.1
79

8856282.145
382

2
0 ==

−
=

WKK t

S

The error ellipse can be computed for any confidence level.  The Fisher distribution needs to be
computed for the selected confidence.  Although the reference variance was computed based on
the total number of unknowns, the Fisher distribution is computed only for the number of
unknowns in the ellipse.  For 95% confidence

( ) 11227.379,2,95.01Fisher =−

Based on this information, the semi-axes of the error ellipse are
( )

510244.011227.3260226497733.0846653521.1

551271.011227.3240264385791.0846653521.1

79,2,95.01Fisher2eigenvalue2
0

=⋅⋅=

=⋅⋅=

−=

minor

major
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The 95% confidence error ellipse is shown on the same graph as the
circle, see figure to the right.  The error ellipse has been magnified by
a factor of 5 to make it more visible.

The meaning of the 95% confidence error ellipse is that if more
points are added to improve the calculation of the circle, there is 95%
probability that the center of the circle will remain within the area
specified by the ellipse.  As expected, as more points are used to
compute the circle, the area of the ellipse becomes smaller.  If the
points lie closer to the actual circle, this will also reduce the ellipse
area.
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